

Leslie E. Robertson Associates, R.L.L.P Consulting Structural Engineers 40 Wall Street, 23rd Floor New York, NY 10005-1339

Tel: (212) 750-9000 Fax: (212) 750-9002 http://www.lera.com

William J. Faschan Partner william.faschan@lera.com

20 June 2016 File: P1069

Mr. Simon Koster

JDS

104 Fifth Avenue, 9th Floor

New York, NY 10011

Via E-mail: skoster@jdsdevelopment.com

9 DeKalb Avenue Structural Engineering Peer Review Report

Dear Mr. Koster:

At the request of JDS, Leslie E. Robertson Associates, R.L.L.P. has conducted a Structural Peer Review of the design of 9 DeKalb Avenue as required by New York City Building Code Section 1617. This report summarizes the extent and findings of our review.

We have reviewed the following:

- Plans listed in Appendix A.
- Geotechnical Report, 9 DeKalb Avenue, dated 9 June 2016, by Mueser Rutledge Consulting Engineers, attached to this report as Appendix B.
- Structural Design Criteria shown in Drawing FO-001.00 dated 21 April 2016 and attached herewith as Appendix C.
- Structural Wind Loads, dated 16 June, 2016, by RWDI, attached to this report as Appendix D.

Through our review, we have confirmed the following aspects of the structural design, as required by Section 1617.5.1:

- the design loads conform to the Building Code;
- the design criteria and design assumptions conform to the Building Code;
- the design properly incorporates the recommendations of the geotechnical engineer;
- the design properly incorporates the recommendations of the wind tunnel laboratory;
- the structure has a complete load path;

LERA

Ms. Simon Koster
20 June 2016
Page 2

• based on our independent calculations of representative foundations, columns, walls, beams and slabs, we find that the design of the structure has adequate strength;

- the structural plans are in general conformance with the architectural plans regarding loads and other conditions that affect the structural design; and
- the structural plans are generally complete.

Accordingly, we find the design of the structure to be in general conformance with the structural and foundation design provisions of the Building Code.

The opinions expressed in this letter represent our professional view, based on the information made available to us. In developing these opinions, we have exercised a degree of care and skill commensurate with that exercised by professional engineers licensed in the State of New York for similar types of projects. No other warranty, expressed or implied, is made as to the professional advice included in this letter.

Very truly yours,

LESLIE E. ROBERTSON ASSOCIATES, R.L.L.P.

William J. Faschan

WJF/pi

cc: Ms. Susan Erdelyi Hamos, WSPCS
 Via e-mail: Susan.ErdelyiHamos@wspcs.com

LERA

APPENDIX A

Plans Reviewed

Architectural Drawings, for DOB Submission, dated 4/21/2016; Structural Drawings, FO/SOE Purchasing Set, dated 4/21/2016.

P1069

LERA

APPENDIX B

Geotechnical Report

GEOTECHNICAL REPORT Phase 1 Boring Investigation 9 DeKalb Avenue (340 Flatbush Ave Extension) Brooklyn, New York

JDS Development Group 104 Fifth Ave New York, New York 10011

Mueser Rutledge Consulting Engineers 14 Penn Plaza, 225 West 34th Street New York, NY 10122

Mueser Rutledge **Consulting Engineers**

14 Penn Plaza · 225 West 34th Street · New York, NY 10122

Tel: (917) 339-9300 · Fax: (917) 339-9400

www.mrce.com

Peter W. Deming Roderic A. Ellman, Jr. Francis J. Arland David R. Good Walter E. Kaeck **Partners**

June 9, 2016

Tony D. Canale Jan Cermak Sitotaw Y. Fantaye Associate Partners JDS Development Group 104 Fifth Ave New York, New York 10011

David M. Cacoilo Alfred H. Brand James L. Kaufman Hugh S. Lacy Joel Moskowitz George J. Tamaro

Attention: Mr. Simon Koster

Elmer A. Richards John W. Fowler **Consultants**

Re: Geotechnical Report

Phase 1 Boring Investigation

9 DeKalb (340 Flatbush Ave Extension)

Brooklyn, New York MRCE File No. 12319

Domenic D'Argenzio Robert K. Radske Ketan H. Trivedi Hiren J. Shah Alice Arana Joel L. Volterra Frederick C. Rhyner Andrew R. Tognon

Dear Mr. Koster,

Senior Associates Douglas W. Christie Gregg V. Piazza Pablo V. Lopez Steven R. Lowe Iames M. Tantalla T. C. Michael Law Andrew Pontecorvo Renzo D. Verastegui

As per your request, Mueser Rutledge Consulting Engineers (MRCE) has completed a Phase 1 subsurface boring investigation for the referenced project. This report presents a summary of our investigation, our interpretation of subsurface conditions encountered in the borings, and general foundation recommendations for the proposed construction.

Associates

Alex Krutovskiy Srinivas Yenamandra

Farid F. Vastani Jesse L. Richins

PROJECT AND SITE DESCRIPTION

Joseph N. Courtade Director of Finance and Administration

We understand that you are planning a high-rise tower development at the referenced site in Brooklyn, New York (See Figure No. S-1). The development will include two cellar levels and will incorporate the existing landmarked bank building. The footprint of the new structure is about 16,700 square feet.

Martha J. Huguet Director of Marketing Prior to development, the site was occupied by two buildings. The north building with two stories was demolished down to the first floor slab prior to our investigation. The five to six story south building will be demolished at a later date. Phase 1 investigation was performed for construction to be performed prior to demolition of the south building.

NYC Transit subway lines run underneath Flatbush Avenue adjacent to the site. MRCE submitted drawings detailing the subsurface investigations to NYC Transit and received approval to perform the investigations.

Sidewalk grades around the site range from Elev. +37.5 to Elev. +42.8. All elevations in this report are referenced to the North American Vertical Datum of 1988 (NAVD 88).

EXHIBITS

The following exhibits are attached:

ExhibitDescriptionFigure No. S-1Site Location PlanDrawing No. B-1Boring Location Plan

Drawing No. GS-R Geotechnical Reference Standards

Drawing No. RC-1 Rock Classification Criteria

<u>Appendix</u> <u>Description</u>

Appendix A MRCE Boring Logs

SUBSURFACE INVESTIGATION

MRCE developed a twelve-boring subsurface investigation program to provide adequate information on subsoil conditions for foundation design and to meet NYC Building Code (Code) requirements for a building supported on deep foundations. Phase 1 included eleven borings, Borings M-1 and M-3 to M12P. Phase 2 will include the remaining one boring, Boring M-2, and will be completed at a later time following demolition of the south building.

All Phase 1 borings were drilled by Aquifer Drilling and Testing, Inc. (ADT) between June 2015 and April 2016 under the continuous inspection of our resident engineers, Mr. Andy Ong and Mr. Matthew Kramer, who prepared field logs for each boring. Drawing No. B-1 shows the as-drilled boring locations as measured by our resident engineers. The borings were made with a track mounted drill rig and restricted access electric drill rig using rotary techniques with casing and drilling mud to stabilize the borehole. Some borings were advanced from the existing cellars. Samples were obtained using a 2-inch O.D. split-spoon sampler driven with a 140-pound hammer falling 30 inches. The number of hammer blows required to advance the split-spoon sampler through each of four six-inch drive intervals was recorded. The Standard Penetration Test (SPT) resistance or N-value, expressed in blows per foot, is an indication of the relative density of the material sampled and is calculated by summing the blows from the second and third six-inch intervals. In some instances where the sampler was unable to penetrate the full 24 inches due to the presence of dense soils, large gravel, cobbles, boulders, or other obstructions, the sampler was driven until 50 to 100 blows were administered and the actual penetration of the sampler was measured and recorded.

Each boring cored at least ten feet of bedrock. Bedrock was cored using an NX-size, double-tube core barrel equipped with a diamond bit, recovering a nominal 2-inch diameter rock core. Percent recovery and Rock Quality Designation (RQD) were determined for each core run. RQD is defined as the sum of the lengths of recovered core pieces greater than four inches in length between natural breaks expressed as a percentage of the total core run. RQD is an indication of the relative

frequency of jointing or natural fracturing of the bedrock. Rock cores were stored in wooden boxes for shipment to our laboratory for verification of field classifications

After completion of the boring program, all soil samples and rock cores were delivered to our inhouse laboratory for verification of field classifications. Individual soil sample descriptions are provided on the typed logs in Appendix A. The MRCE soil classification system is shown on Drawing No. GS-R. Sketches of recovered cores prepared in the field are also attached to the boring logs. Rock core classification terminology and criteria used are shown on Drawing No. RC-1.

A slotted standpipe piezometer (groundwater observation well) was installed in Borings M-4PA and M-12P to measure depth to groundwater. The piezometer sketches are attached to the borings logs. The well was flushed with clean water. A falling head test was performed in each piezometer to confirm it is functional.

SUBSURFACE CONDITIONS

Site Geology Paleozoic bedrock lies below the site roughly at about Elev. -100. A series of glaciations crossed the region during the Pleistocene epoch. The glacial ice scoured away older soil and deposited assorted layers of glacial sediments above the rock. The most recent glacier stopped about a mile to the southeast, building up a terminal moraine. At the end of the last ice age the glacier retreated northward, depositing outwash sand behind the terminal moraine. Minor re-advances of the glacial ice during the final retreat densified the soil below and deposited layers of till above the older outwash sand. Shallow man-made fills were used to facilitate development of the area.

General descriptions of the materials encountered below the cellar slab are summarized below in order of their occurrence with depth:

Stratum F – **Fill (NYC Class 7)** All borings encountered an up to 10 foot thick layer of fill below the cellar slab consisting of brown fine to coarse sand with some silt, gravel, and traces of concrete, brick, and asphalt. N values ranged from 0 (weight of rods) to over 100 blows per foot (bpf), with an average of about 25 bpf. Rock fragments and obstructions were observed in this layer.

Strata S & T – Glacial Sand and Upper Till (NYC Class 3) All borings encountered a thick layer of assorted densities of glacial sand and till below the fill. The thickness of these deposits typically ranges from 80 to 100 feet. These strata generally consist of brown fine to medium sand, with trace gravel and silt present. Typical N-values range from 20 bpf to over 100 bpf with an average of about 50 bpf.

Stratum C – Clay (NYC Class 4) Most borings encountered a layer of clay underlying the above glacial deposits. Typical N-values range from 20 to over 100 bpf with an average of about 42 bpf. This layer consisted of dense gray clay, with trace mica present in some samples.

Stratum T – Lower Till (NYC Class 3) Some borings encountered a layer of lower till up to about 10 feet thick below Stratum C. This layer was encountered when sampling reached refusal and coring was required, and most of the granular material was washed out of the sample during coring.

The cores recovered within the lower till consisted of gray and brown gravel and cobbles. N-values were not obtained.

Stratum R – Bedrock (NYC Class 1) The top of rock depths generally ranges from 100 to 120 feet below sidewalk. The bedrock typically consisted of slightly weathered to unweathered gray schistose gneiss, broken to massive, with iron stained and weathered joints. Rock core recoveries ranged from 40% to 100% and RQD values ranged from 0% to 93%.

Groundwater Groundwater level observations in the two piezometers installed in Boring M-4PA and M-12P measured at Elev. +2.5 to Elev. +3.4 during our investigations.

GENERAL FOUNDATION RECOMMENDATIONS

Foundation design must take into account the existing subsurface conditions and presence of adjacent structures including the landmark bank building and subway tunnels. Considering typical column and shear wall loads for proposed tower, subsurface conditions, and presence of the subway tunnel, deep caisson foundations drilled into bedrock should be used to support the proposed tower. Drilled mini-caissons and footings bearing directly on natural sand deposits underlying the site should also be considered for smaller load columns within the low rise portions of the development. The foundation design will be governed by demands for compression, lateral and uplift capacities.

The intent of using drilled elements is to penetrate the existing dense overburden soils (and boulders) with limited installation vibrations. In order to meet NYC Transit criteria for foundations adjacent to subway tunnels, drilled foundations within the subway influence lines must be installed with internal flush drill methods, and a permanent frictionless casing extended below the tunnel influence lines. Such installation methods will also reduce risk of significantly impacting adjacent buildings. For sandy soils, the subway influence lines typically have a slope of 1 to 1.5 horizontal to 1 vertical from the base of the subway structure. Within ten feet of the subway tunnel, foundations will need to develop their capacity below the base of the tunnel. Drilled caissons or min-caissons can be installed a minimum of three feet from the subway, measured from the edge of the pile or casing to the wall of the subway. Note that remnants of support of excavation used for the tunnel construction may potentially interfere with foundation drilling near the subway.

Basement Slab and Walls The basement slab should be designed as a structural slab spanning between pile caps and beams. The foundation walls should be designed to resist at-rest earth pressures and surcharges consistent with the Code. As the proposed basement is above the natural groundwater table measured during our subsurface investigation, long term groundwater pressure does not need to be considered. The design of the walls should however consider short-term groundwater pressure (say 5 feet of pressure head) for an extreme condition of a large water main break.

Waterproofing of the basement is not required and only a damp proofing requirement is included in the Code. However, if higher quality spaces are to be located in the basement you should consider waterproofing the cellar to limit infiltration of surface water seepage (e.g., from rain) and limit problems in the event of a utility break underneath the street.

Seismic Design The site is in seismic Site Class D as per the Code. Site Class D results in Seismic Design Category (SDC) B. A site specific study could improve the design accelerations by up to 20 percent when compared with the Code accelerations but would not improve the SDC.

Adjacent Structures Consideration should be given during construction to protection, instrumentation, and monitoring of the adjacent structures that include the landmark bank building and subway structures abutting the project site. NYC Transit approval will be required for support of excavation and foundation design.

We trust this report will allow you to proceed with the design of the project. More detailed recommendations will be provided as needed.

Very truly yours,

MUESER RUTLEDGE CONSULTING ENGINEERS

AEP:JC:F:\123\12319\Geotechnical Report\Geotech Report 12319.docx

NOTE: PLAN OBTAINED FROM NYC OASIS. NOT TO SCALE.

9 DeKalb Avenue Extension, Brooklyn, NY							
Mueser Rutledge Consulting Engineers 225 West 34 th Street • New York, NY 10122	MRCE File No. 12319						
SITE LOCATION PLAN	FIGURE NO. S-1						

Printed by: Jan Cermak Printed on: Thursday, Jun 09, 2016 - 06:43:18 PM Last saved by: jcermak on Thursday, Jun 09, 2016 - 6:42:46 PM

TERMINOLOGY USED IN MRCE SOIL DESCRIPTIONS

DEGREE OF COMPACTION	I FOR NON-PLASTIC SOIL		DESCRIPTION OF CONSTITUENT		
DEGREE OF COMPACTION	BLOWS* PER FOOT	CONSISTENCY	UNCONFINED COMPRESSIVE STRENGTH (TSF)	IDENTIFICATION CHARACTERISTICS	PERCENTAGES AS USED IN SOIL SAMPLE CLASSIFICATIONS
LOOSE	0 TO 10	SOFT	LESS THAN 0.5	EASILY REMOLDED WITH SLIGHT FINGER PRESSURE	1% TO 12% - "TRACE"
MEDIUM COMPACT	11 TO 29	MEDIUM	0.5 TO 1.0	REQUIRES SUBSTANTIAL PRESSURE FOR REMOLDING	13% TO 30% - "SOME" 31% TO 49% - ADJECTIVE FORM OF
COMPACT	30 TO 50	STIFF	1.0 TO 4.0	DIFFICULT TO REMOLD WITH FINGERS	SOIL GROUP (EG. SANDY)
VERY COMPACT	GREATER THAN 50	HARD	GREATER THAN 4.0	CANNOT BE REMOLDED WITH FINGERS	EQUAL AMOUNT — "AND" (EG. SAND AND GRAVEL)
* STANDARD PENETRATION RESISTANCE U HAMMER FREE FALLING 30 INCHES TO O.D. SPLIT-SPOON SAMPLER.		+ NONPLASTIC SILTS ARE D AS PRESENTED FOR NON-	ESCRIBED USING DEGREE OF COMPACTIONPLASTIC SOIL.		

BORING LEGEND A — NUMBER, TYPE AND LOCATION OF BORING EL. — GROUND SURFACE ELEVATION AT BORING B — NUMBER AND TYPE OF SAMPLE HA - HAND AUGER SAMPLE D - DRY SAMPLE TAKEN WITH 2 INCH O.D. SPLIT SPOON U - UNDISTURBED SAMPLE TAKEN WITH 3 INCH O.D. FIXED PISTON TYPE SAMPLER UD - UNDISTURBED SAMPLE EXTRUDED IN FIELD AND PLACED IN JAR DUE TO POOR RECOVERY OR DISTURBANCE S - THIN TUBE SAMPLE TAKEN WITH SHELBY N - THIN TUBE SAMPLE TAKEN WITH DENISON BARREL SAMPLER P - THIN TUBE SAMPLE TAKEN WITH PITCHER BARREL SAMPLER NR - NO RECOVERY LENGTH OF SAMPLE ATTEMPT STANDARD PENETRATION RESISTANCE. NUMBER OF BLOWS FROM 140 LB. HAMMER FREE FALLING 30 INCHES REQUIRED TO DRIVE 2 INCH O.D. SPLIT SPOON SAMPLER ONE FOOT AFTER INITIAL PENETRATION OF 6 INCHES, UNLESS A SPECIFIC PENETRATION IS INDICATED. P - PRESSED OR PUSH SAMPLE WH - SAMPLE TAKEN UNDER WEIGHT OF WR - SAMPLE TAKEN UNDER WEIGHT OF RODS AVERAGE NATURAL WATER CONTENT OF SAMPLE, IN PERCENT OF DRY WEIGHT UNIFIED SOIL CLASSIFICATION GROUP SYMBOL OF SAMPLE 「J │ = ATTERBERG LIQUID LIMIT VALUE ATTERBERG PLASTIC LIMIT VALUE COMPRESSIVE STRENGTH IN TSF DETERMINED FROM UNCONFINED COMPRESSION TEST COMPRESSIVE STRENGTH IN TSF DETERMINED FROM UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST GROUNDWATER LEVEL OBSERVED IN BORING *- MUD LEVEL GROUNDWATER LEVEL OBSERVED IN PIEZOMETER ROCK CORE NUMBER LENGTH OF CORE RUN F — LENGTH OF CORE RECOVERED EXPRESSED AS A PERCENT R - ROCK QUALITY DESIGNATION—THE SUM OF THE LENGTHS OF PIECES OF RECOVERED CORE WHICH ARE EQUAL TO OR GREATER THAN FOUR INCHES IN LENGTH, EXPRESSED AS A PERCENTAGE OF THE TOTAL LENGTH OF CORE RUN. LENGTHS ARE MEASURED BETWEEN IN-SITU SEPARATIONS AND MECHANICAL BREAKS RESULTING FROM CORING IMPERVIOUS SEAL SAND FILTER SURROUNDING PIEZOMETER INTAKE ELEMENT INTAKE ELEMENT COBBLE OR BOULDER

REVISED 10-25-2012

MUESER RUTLEDGE CONSULTING ENGINEERS

225 WEST 34th STREET - 14 PENN PLAZA

NEW YORK, NY 10122

GEOTECHNICAL REFERENCE STANDARDS | GS-R

TABLE R-1 ROCK CORE CLASSIFICATION CRITERIA

HADDNIEGE /COUNDNIEGE				INTACT SPECIMEN TYPICAL MINIMUM COMPRESSIVE			
HARDNESS/SOUNDNESS CLASSIFICATION	TYPICAL GEOLOGIC CLASSIFICATION	IDENTIFICATION CHARACTERISTICS	NX OR	LARGER	BX OR	SMALLER	STRENGTH
			REC	RQD	REC	RQD	PSI
HARD ROCK UNWEATHERED MAY BE JOINTED	-CRYSTALLINE IGNEOUS, OR METAMORPHIC ROCKS -HIGHLY SILICEOUS SEDIMENTARY ROCKS	UNWEATHERED FABRIC RINGS WHEN STRUCK WITH BAR SHARP AND HARD FRACTURE SURFACE WHEN BROKEN MECHANICALLY MAY BE JOINTED, BUT JOINTS ARE GENERALLY TIGHT. JOINTS MAY BE IRON STAINED. DOES NOT DISINTEGRATE UPON EXPOSURE DOES NOT SLAKE IN WATER	95 OR MORE	85 OR MORE	85 OR MORE	75 OR MORE	3000
MEDIUM HARD ROCK SLIGHTLY WEATHERED MAY BE CLOSELY JOINTED	AS FOR HARD ROCKS AND: - MODERATELY SILICEOUS SEDIMENTARY ROCKS - CERTAIN CALCAREOUS ROCKS	AS FOR HARD ROCK, EXCEPT: - FABRIC MAY BE IRON STAINED - MAY BE CLOSELY JOINTED, BUT JOINTS ARE GENERALLY TIGHT. JOINTS HAVE SLIGHT WEATHERING OR MAY BE IRON STAINED.	70	50	50	40	1500
INTERMEDIATE ROCK MODERATELY WEATHERED MAY BE CLOSELY JOINTED	AS FOR MEDIUM HARD ROCKS AND: - MOST SEDIMENTARY ROCKS OTHER THAN COMPACTION SHALES - MOST CALCAREOUS ROCKS WHICH ARE NOT POROUS	AS FOR MEDIUM HARD ROCK, EXCEPT: - MODERATELY WEATHERED FABRIC - WEATHERED JOINTS - THUDS WHEN STRUCK BY BAR - CAN BE INDENTED WITH A STEEL NAIL - BREAKS READILY WITH HAMMER - PIECES OF WEATHERED SURFACE CAN BE BROKEN OFF BY HAND - DOES NOT DISINTEGRATE UPON EXPOSURE - UNWEATHERED PIECES DO NOT SLAKE	50	35	35	25	500
WEATHERED ROCK HIGHLY WEATHERED MAY BE BROKEN	AS FOR INTERMEDIATE ROCKS AND: - COMPACTION SEDIMENTARIES - CALCAREOUS ROCKS WITH SOIL—FILLED CAVITIES	AS FOR INTERMEDIATE ROCK, EXCEPT: - HIGHLY WEATHERED FABRIC - CAN BE BROKEN EASILY, CRUMBLES WITH DIFFICULTY BY HAND - CAN BE SCRAPED BY KNIFE - MAY SOFTEN UPON EXPOSURE - MAY SLAKE IN WATER - STANDARD PENETRATION RESISTANCE EXCEEDS 50 BLOWS/FOOT	LESS LESS LESS LESS THAN THAN THAN THAN 50 35 35 25 WHEN RECOVERED WITH SOIL SAMPLING TECHNIQUES, DESCRIBED AS FOR SOILS INCLUDING USC GROUP SYMBOLS. (WITHD ROCK) ADDED TO DESCRIPTION.		150		
DECOMPOSED ROCK (RESIDUAL SOILS)	ALL ROCK TYPES	ROCK TEXTURE AND STRUCTURE OFTEN PRESERVED GENERALLY SOIL-LIKE IN CONSISTENCY CAN BE CRUMPLED BY SLIGHT HAND PRESSURE CAN BE PEELED WITH A KNIFE STANDARD PENETRATION RESISTANCE LESS THAN 50 BLOWS/FOOT	TECHNIQUE INCLUDING	RECOVERED W S AND DESCRIB USC GROUP S' DESCRIPTION.	ED AS FOR SOI	LS	

TABLE R-2 WEATHERING AND JOINTING DEFINITIONS

DEGREE OF F		WEATHERING CHARACTERISTIC
Unweathered	UnW	No decomposition or discoloration rings when struck
Slightly Weathered	SIW	Iron Stained Rings when struck
Moderately Weathered	MdW	Deteriorated fabric Thuds when struck
Highly Weathered	HiW	Friable, easily broken by hand
Decomposed	Dec	Soil-like

DEGREE OF JOINT WEATHERING	JOINT	WEATHERING CHARACTERISTIC
Iron stained joints	FeJtS	Indicates movement of water along joints
Weathered joints	WJts	Joints are not tight and do not match. Joints have friable edges.

<u>D</u>	DEGREE OF JOINTING								
<u>JOINTING</u>		JOINT FREQUENCY							
Massive	Mssv	Less than 1 joint in 4 feet							
Blocky	Blky	1 joint every 2 to 4 feet							
Moderately Jointed	MdJtd	1 joint every foot to 2 feet							
Jointed	Jtd	1 to 2 joints per foot							
Closely Jointed	ClJtd	2 to 4 joints per foot							
Broken	Bkn	More than 4 joints per foot							

Vertical joints are ignored in RQD and joint frequency evaluations, but are noted in written descriptions and and on core sketches.

TABLE R-4 ROCK CORE SKETCH KEY

1	DUCK	CODE	DESCRIPTIONS	DEDDECENT	ONLY	THE	MATERIAL	DECOVEDED	INI	THE
١.	NOCK	COKE	DESCRIE HONS	KELKESENI	ONLI	ITIE	MATERIAL	RECOVERED	11.4	ILL
	CORIN	C OPE	PATIONS							

NOTES:

- 2. GENERAL MINIMUM CORING CHARACTERISTICS ASSUME ROCK CORING WITH A DOUBLE TUBE SERIES "M" OR EQUIVALENT CORE BARREL USING GOOD CORING TECHNIQUES AND EQUIPMENT.
- 3. REC RECOVERY IS THE LENGTH OF CORE RECOVERED, EXPRESSED AS A PERCENTAGE OF THE LENGTH OF CORE RUN.
- 4. RQD ROCK QUALITY DESIGNATION IS THE SUM OF THE LENGTHS OF CORE PIECES FOUR INCHES OR LONGER EXPRESSED AS A PERCENTAGE OF THE TOTAL LENGTH OF CORE RUN. LENGTHS ARE MEASURED BETWEEN IN-SITU SEPARATIONS; MECHANICAL BREAKS RESULTING FROM CORING AND VERTICAL JOINTS ARE IGNORED.

TIAIOI.	ORIFNTATION	ΔNID	CONDITION

SKETCH	H SYMBOLS	<u> JOIN</u>	<u>IT O</u>	RIENTAT	TON AN	D	<u>CONDI</u>	<u>TION</u>		
	Joint				SURFAC	E	_	CONDI	<u>ION</u>	
		Parallel	_	//	Curved	-	С	Slick	-	1
XXXXXX	Healed Joint	Crossing	_	Χ	Irregular	_	ı	Smooth	_	2
	Broken	Orossing		^	J					
	Part of Core Not Recovered	Foliation	-	F	Straight	-	S	Rough	-	3
	Cavities or Vugs in Core	Stratification	-	S						
	Clay	Unfoliated or	_	U						
	Sand	Unstratified								
		Mechanical Break	-	MB						

TABLE R-3 ABBREVIATIONS FOR ROCK CORE CLASSIFICATION

Blocky	Blky	Intermediate	Int
Broken	Bkn	Light	Lt
Brown	brn	Lignite	lign
Calcareous or Calcite	calc	Limestone	lms
Cavities	cvts	Jointed	Jtd
Chlorite	chl	Joints	Jts
Clay, Clayey	cl	Massive	Mssv
Closely Jointed	ClJtd	Medium Hard	MdHd
Coating on joint surface	coat	Mica, Micaceous	Mic
Crushed	crsh	Moderately Jointed	MdJtd
Dark	dk	Moderately Weathered	MdW
Decomposed	Dec	Pockets	pkts
Ditto	do	Quartz	qtz
Dolomite, Dolomitic	Dol	Recovery	Rec
Iron stained Joints	FeJts	Rock Quality Designation	RQD
Iron Stained	FeStn	Sand	sa
Feldspar	feld	Sandstone	SS
Foliation	Fol	Schist, Schistose	sch
Fractured	frct	Shale	sh
Fragments	fgmts	Shear zone	Sz
Gneiss, Gneissic	gns	Siliceous	sil
Gouge	gog	Silt	si
Granite, Granitic	gr	Slickensided	slks
Gray	gry	Slightly Weathered	SIW
Hard	Hd	Unweathered	UnW
Highly Weathered	HiW	Weathered	Wthd
Hornblende	Hbl	Weathered Joints	WJts
Injected	inj	Vein	Vn
Interbedded	Intrbd	Vertical Joints	VJts

MUESER RUTLEDGE CONSULTING ENGINEERS 225 WEST 34th STREET - 14 PENN PLAZA

NEW YORK, NY 10122

RC-1

ROCK CORE CLASSIFICATION CRITERIA

APPENDIX A

MRCE BORING LOGS

		SHEET 1 OF	2	
PROJECT:	340 FAE	FILE NO.	12319	
LOCATION:	BROOKLYN, NEW YORK	SURFACE ELEV.	42.5	
		RES. ENGR. MA	TTHEW KRAMER	₹

DAILY		SAME	DI F				CASING	WATTIEW KRAWER
PROGRESS	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA			
08:00	1D	0.3	2-3	Gray black fine to coarse sand, some gravel,	**	0.3		**Concrete slab from
06-04-15		2.3	1-4	trace brick, concrete, silt (Fill) (SP-SM)				0' to 0.3'.
Thursday	2D	2.3	3-2	Brown silty fine to coarse sand, trace gravel,	F			1D: REC=4"
Overcast		4.3	2-2	brick, concrete (Fill) (SM)				Rig chatter at 3'.
60°F, 09:00/					**	4.5		**Concrete from 4.5' to
						5		5'.
								Boring offset to inside
								property line.
						40		End of Boring at 5'.
						10		
						15		
						20		
						25		
						30		
						25		
						35		
						40		
						45		
						50		
t-			·	1				

BORING NO. M-4P

BORING NO. M-4P

MUESER RUTLEDGE CONSULTING ENGINEERS

				BORING N	10.	M-4F	
				SHEET	2	OF	2
PROJECT	340 FA	ΛE		FILE NO.		12319	
LOCATION	BROOKLYN, N	EW YORK		SURFACE	ELEV.	42	2.5
BORING LOCATION SE	E BORING LO	CATION PLA	N	DATUM		NAVD 88	
				-			
BORING EQUIPMENT AND METH	ODS OF STABIL	IZING BODEH	OL E				
TYPE OF		IZING BOKEH	<u>OLE</u>				
TYPE OF BORING RIG DURING		CASING U	ISED		YES	X NO	
TRUCK MECHAN		DIA., IN.	5025	DEPTH, FT.		TO)
SKID HYDRAUI		DIA., IN.	-	_ DEPTH, FT.		TC	-
BARGE OTHER		DIA., IN.	-	_DEPTH, FT.		тс	-
OTHER CME LC55					TROM		,
<u> </u>							
TYPE AND SIZE OF:		DRILLING	MUD USED	Х	YES	NO	
D-SAMPLER 2" O. D. SPLIT SPOOI	N	DIAMETE	R OF ROTARY BIT	, IN.		2-7/8	
U-SAMPLER		TYPE OF	DRILLING MUD	-		REVERT/QUIK	MUD
S-SAMPLER				=			
CORE BARREL NX DOUBLE TUBE		AUGER U	SED		YES	X NO	
CORE BIT NX DIAMOND		TYPE ANI	D DIAMETER, IN.				
DRILL RODS NWJ				=			
		*CASING	HAMMER, LBS.	140	AVERAGE	FALL, IN.	30
		*SAMPLE	R HAMMER, LBS.	140	AVERAGE	FALL, IN.	30
		*USED AL	JTOMATIC HAMME	R.			
WATER LEVEL OBSERVATIONS I	N BOREHOLE						
DEPTH OF	DEPTH OF	DEPTH TO					
DATE TIME HOLE	CASING	WATER		CONDITION	NS OF OBS	SERVATION	
			NO '	WATER LEVI	EL OBSER	VATIONS MAD	E.
	_	1					
PIEZOMETER INSTALLED	YES X	NO SKI	ETCH SHOWN C	ON			
STANDPIPE: TYPE		ID, IN.	I ENI	GTH, FT.		TOP ELEV.	
INTAKE ELEMENT: TYPE		OD, IN.		GTH, FT.		TIP ELEV.	
FILTER: MATERIAL		OD, IN.		GTH, FT.		BOT. ELEV.	
MATERIAL		OD, IN.		J111, 1 1.		_ BOT. ELEV.	
PAY QUANTITIES							
3.5" DIA. DRY SAMPLE BORING	LIN. FT.	4.3	NO. OF 3" SHEL	BY TUBE SA	MPLES		
3.5" DIA. U-SAMPLE BORING	LIN. FT.		NO. OF 3" UNDIS				
CORE DRILLING IN ROCK	LIN. FT.		OTHER:	STORBED OF	WIII LLO		
JULIE DIVILLATO IN NOON			J.1.1210.				
BORING CONTRACTOR		AQUIFI	ER DRILLING &	TESTING C	O., INC.		
DRILLER	JAMES		HELPERS			DANNY	
REMARKS		REHOLE GRO	 OUTED UPON C	OMPLETIO			
RESIDENT ENGINEER		ATTHEW KRAI			DATE	06-0	4-15
CLASSIFICATION CHECK:	CHERYL J.		TYPING CHEC			ANDRA PATR	
MRCE Form BS-1			_			RING NO.	M-4P

/	SHEET 1 OF		
12319	FILE NO.	340 FAE	PROJECT:
42.5	SURFACE ELEV.	BROOKLYN, NEW YORK	OCATION:
ATTHEW KRAMER	RES. ENGR. MA		

	1					KES.	1	. MATTHEW KRAMER
DAILY		SAMI	PLE				CASING	
PROGRESS	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA	DEPTH	BLOWS	REMARKS
12:30					**	0.3	DRILLEI	**Concrete from 0' to
06-04-15							AHEAD	0.3'.
Thursday							4" 3"	Drilled ahead to 15'.
Overcast							ΗŤ	
65°F						5		
03 F								_
					CELL AD			
					CELLAR			
						10		
					CONC	12.5		
					SLAB	15		
	1D	15.0	14-16	Brown gray silty fine to medium sand, some				
		17.0	18-20	gravel (Fill) (SM)	F	17		
	2D	17.0	13-19	Brown fine to coarse sand, some silt, gravel				
	20	19.0	16-19	(SM)				-
	3D	19.0	12-15	Brown fine to coarse sand, some silt, trace		20		_
	30					20		_
14:30	41.15	21.0	29-20	gravel (SM)				-\
07:30	4NR	21.0	33-35	No recovery				No recovery after 2
06-05-15		23.0	28-30					attempts.
Friday	5D	23.0	23-15	Brown fine to coarse sand, some silt, trace				
Overcast		25.0	18-18	gravel (SM)		25		
60°F								
						30		
	6D	30.0	17-33	Brown gravelly fine to coarse sand, some silt				
		32.0	38-48	(SM)				_
		02.0	00 .0	(C.I.)	Т			1
						35		
	70	25.0	47.40	Red brown fine to coarse sand, some gravel,		- 33		-
	7D	35.0	47-49					_
		37.0	42-54	silt (SM)				
						40		
	8D	40.0	12-18	Red brown fine to coarse sand, trace silt, gravel				
		42.0	21-24	(SP-SM)				
							\sqcup	
						45		
	9D	9D 45.0 13-15 Red bro		Red brown fine to coarse sand, some gravel,				
		47.0	20-21	trace silt (SP-SM)				Wet sample at 47'.
		-		,				
						48.5		
					•	50		
	10D	50.0	6-11	Top: Brown f-m sand, trace silt (SP-SM)	S	51		-
	100	52.0	18-36	Bot: Brown f-c sand, sm gravel, tr silt (SP)	G	٥.		-
	1	JZ.U	10-30	Dot. Drown 1-0 sand, sin graver, it sin (OF)	<u> </u>	l	_ T T	

BORING NO. M-4PA

M-4PA

7	SHEET 2 OF		
12319	FILE NO.	340 FAE	PROJECT:
42.5	SURFACE ELEV.	BROOKLYN, NEW YORK	LOCATION:
MATTHEW KRAMER	RES ENGR		

DAHA		SAMI					_		VIATITIEW KRAIVIER
DAILY PROGRESS	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA	DEDTH	CAS		REMARKS
Cont'd	NO.	DEI III	BLOWS/0	GAMILLE BESORII TION	OTIVATA	DLI III	DRIL		ILMANIO
06-05-15							AHE		
Friday							4"		
Overcast							Ť	Ť	
60°F						55	\		
	11D	55.0	6-15	Brown fine to medium sand, trace gravel,			,		
		57.0	21-24	coarse sand, silt (SP-SM)					
						60			
	12D	60.0	15-21	Brown fine to medium sand, trace silt, coarse					
		62.0	24-25	sand (SP-SM)					
						65			
	13D	65.0	16-20	Brown fine to medium sand, trace silt (SP-SM)		65			
14:15	130	67.0	21-27	brown fine to medium sand, trace siit (SF-Sivi)					
07:30		07.0	2121						
06-08-15									
Monday						70			
Overcast	14D	70.0	19-21	Brown fine to medium sand, trace silt (SP-SM)					
70°F		72.0	23-25						
						75			
	15D	75.0	23-22	Brown fine to medium sand, trace silt (SP-SM)	S				
		77.0	24-29						
						80			
	16D	80.0	19-24	Brown fine to medium sand, trace silt, mica		- 00			
	100	82.0	28-30	(SP-SM)					
		02.0	_0 00						
						85			
	17D	85.0	21-28	Brown fine to medium sand, trace silt, mica					
		87.0	27-34	(SP-SM)					
						-			
	405	00.0	00.00	Description to account to the college		90			
	18D	90.0 92.0	32-33 36-41	Brown fine to coarse sand, trace silt, mica			-		
		92.0	36-41	(SP-SM)					
							-		
						95	1		
	19D	95.0	24-27	Brown fine to medium sand, trace silt, coarse					
		97.0	32-32	sand (SP-SM)			1		
				, ,					
						100			
	20D	100.0	23-27	Brown fine to medium sand, trace silt, mica					
		102.0	30-29	(SP-SM)				V	

BORING NO. M-4PA

BORING NO. M-4PA

7	SHEET 3 OF		
12319	FILE NO.	340 FAE	PROJECT:
42.5	SURFACE ELEV.	BROOKLYN, NEW YORK	LOCATION:
IATTHEW KRAMER	RES. FNGR. M/		

						RES			MATTHEW KRAMER
DAILY		SAM	PLE				CAS	ING	
PROGRESS	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA	DEPTH	BLC	ws	REMARKS
Cont'd							DRIL	LED	
06-08-15							AHE		
Monday			-		s		3		
Overcast			-		3				
70°F			-			105			
12:00	21D	105.0	27-100/3"	Top: Brown fine sand, some silt (SM)	_	105.5			
07:30		105.8	2. 100/0	Bot: Stiff gray org silty clay, trace shells (OH)	С	105.8			21D Bot: WC=20
06-09-15	1C	105.0	REC=40%	Gray gravel & cobbles		10010		2*	*Coring time in
Tuesday	-10	107.5	RQD=NA	Gray graver a cobbles				6*	minutes per foot.
Overcast	2C	107.5		Gray & brown gravel & cobbles	Т	110	15		minutes per root.
65°F	20	107.5	RQD=NA	Gray & brown graver & cobbles	•	110	13	3*	
00°F	3C	109.0	4	Gray gravel & cobbles				5*	
	30	111.5	RQD=NA	Gray graver & cobbles		112.5		6*	
	4C			Madium hard alightly weathered to unweathered		112.3		*/1*	
	40	111.5		Medium hard slightly weathered to unweathered		115			
		116.5		gray gneiss, jointed, iron stained & WJts		115		· 3*	
	5C	116.5		Medium hard unweathered gray gneiss,		-	3		
		121.5	RQD=73%	closely jointed to jointed, iron stained &	R		3.		
			-	weathered joints			3.		
			-			400	1.5		
						120	2		
14:45			-				4		
			-			121.5			End of Boring at 121.5'.
							5		
							2	*	WC=Water Content
						125			in percent of dry
									weight.
						130			
			-			135			
			-						
			1						
			1			140			
			1						
			1				1		
			1						
			-						
			1			145	1		
			1			- 10			
	-		-				1		
	<u> </u>		-				1		
	-		-				+		
			-			150			
			1			130			
	-		-				1		
					1				

BORING NO. M-4PA

BORING NO. M-4PA

New York, NY 10 T: 917 339-9300 www.mrce.com PROJECT: 340 LOCATION: Brook	F: 917 339-9400 FAE	ngineers	BORING NO. SHEET FILE NO. SURFACE ELEV.	M-4PA 4 OF 7 12319 42.5 Matthew Kranger
TEST/INSP. EQUIPMENT REF. CODES/STANDARDS		<u> </u>	RES ENGR.	Maynew Manuer
Run No. REC/RQD	Run No. REC/RQD 5 C 94/73.3	Run No. REC/RQD 4C 86.6/80	Run No. REC/RQD 1 C 40/NA 2 C 883/NA 3 C 36/NA	
BOTTOM	J20*XFI3 J00*XF82 J05*S2 J05*S2 J05*XFS2 J30*XFS2 MB10*XFS2 MB10*XFS2 J10*XFS2	JoxFIZ - fe+ wj+	Jointon Ab 16 XF 52 Jointon Bottom	C - Curved I - Irregular S - Straight

PROJECT:

Mueser Rutledge Consulting Engineers 14 Penn Plaza - 225 West 34th Street New York, NY 10122

T: 917 339-9300 F: 917 339-9400

www.mrce.com

PIEZOMETER OR BORING NO.

FILE NO. 12319

PIEZOMETER RECORD

INSTALLATION DATE 6/10/

RES ENGR.

LOCATION: PIEZOMETER LOCATION:

☐ SEE SKETCH ON BACK

GROUND SURFACE ELEV. +42.5	PIEZOMETER INSTALLATION (FT) DETAILS 0	PIEZO	depth t dep diameter, in = 4	NDPIPE/RISER	739 12 = L . 337 = 2R
		READING TIME DATE CLOCK 6/15 8:30	DEPTH - RIM TO WATER	ELEVATION OF WATER	REMARKS
5	22 36 38 40	6/17 7:00 6/12 7:00 6/23 7:00 6/24 7:15 6/29 7:00 6/30 7:60 7/2 7:30	20.5 26.5 26.5 27 27 26.5 26.5 26.5 26.5 26.5	+2.5' +2.5' +2.5' +3' +2.5' +3' +3' +3'	

SAND △ △ ✓ □ GRAVEL

GROUND SURFACE ELEV. +42.5 PIEZOMETER NO.

Mueser Rutledge Consulting Engineers

VARIABLE HEAD PERMEABILITY TEST

Mueser Rutledge Consultin
14 Penn Plaza - 225 West 34th Street
New York, NY 10122
T: 917 339-9300 F: 917 339-9400

www.mrce.com

•			
)	F: 917	339-9400	
			BOREHOLE OR

d	PIEZOMETER NO.	M-	4PA

PROJECT:	340, FAE	_
LOCATION:	Brooklyn	_
DIEZOMETER LOC	TION: / See R/P	

depth to bottom, depth to top, length, diameter, in =	ft = ft =	50' 40' 10'	= L = 2R
$\frac{\text{STANDPIPE/RISER}}{\text{elevation of rim,}}$ diameter, in = $\frac{2^{-1}}{2^{-1}}$, depth of casing,	ft =	<u> 80'</u>	= 2r
depth to which stand- pipe was bailed			_ = Z

or height filled to

ELAPSED	TIME	Δt	MIN.
CLAPSED	IIIVIE,	ш,	140114.

READING TIME		TEST DEPTH,	DEPTH RIM TO		UNBALANCED HEAD	HEAD	
DATE	CLOCK	Δt MIN.	RIM TO WATER H _t (ft.)	H _{STATIC} (ft.)	H _{u =} H _t - H _{STATIC} (ft.)	RATIO H _u /H ₀	REMARKS
/30	9:15	STATIC	0.00		10 8	-26	
		15 sec	7'		19.5	7736	
		30 rec	17,		9,5	.357	
	-	lmin		26.0	2,5	.094	
		4 min	261	3	.5	.0189	
		9 min	26.2		, 3	.01/3	
		15 min	26.4		,1	.004	
		30 min	26.4			.004	
		1 hr	26.4"	-	0	0	
	<u> </u>	2 hr	26.5				
				-			
			 	-			
				-			
				-			
		(
		To East					

PIEZOMETER	NO.

MUESER RUTLEDGE CONSULTING ENGINEERS

						BORING	NO.	M-4	1PA	
						SHEET	7	OF		7
PROJECT	Г		340 F	AE	FILE NO.		12319	9		
LOCATIO	N	Е	ROOKLYN, N	IEW YORK		SURFACE	E ELEV.		42.5	
BORING I	LOCATION	SE	BORING LO	CATION PLA	N	DATUM		NAVD	88	
						_				
BORING E	EQUIPMEN	NT AND METHO	DS OF STABIL	IZING BOREH	<u>OLE</u>					
		TYPE OF F	EED							
TYPE OF B	ORING RIG	DURING C	ORING	CASING U	JSED	X	YES	NO		
TRUCK		MECHANIC	CAL	DIA., IN.	4	DEPTH, FT	. FROM	0	TO	55
SKID		HYDRAULI	с х	DIA., IN.	3	DEPTH, FT	. FROM	0	то	115
BARGE		OTHER		DIA., IN.		DEPTH, FT	. FROM		то	
OTHER	CME LC	:55				-				
•										
TYPE ANI	O SIZE OF	:		DRILLING	MUD USED	X	YES	NO		
D-SAMPLE	R 2" O.	D. SPLIT SPOON		DIAMETE	R OF ROTARY BI	T, IN.		2-7/8	i	
U-SAMPLE	R			TYPE OF	DRILLING MUD			QUIK MI	JD	
S-SAMPLEI	R									
CORE BAR	REL NX D	OUBLE TUBE		AUGER U	SED		YES	X NO		
CORE BIT	NX D	IAMOND		TYPE ANI	D DIAMETER, IN.		-			
DRILL ROD	NWJ									
				*CASING	HAMMER, LBS.	140	AVERAGE	E FALL, IN.	30	
				*SAMPLE	R HAMMER, LBS.	140	AVERAGE	E FALL, IN.	30	
				*USED AL	JTOMATIC HAMM	ER.	-			
WATER L	EVEL OBS	SERVATIONS IN	I BOREHOLE							
		DEPTH OF	DEPTH OF	DEPTH TO						
DATE	TIME	HOLE	CASING	WATER		CONDITIO	NS OF OB	SERVATION		
06-05-15	07:05	23	23		MUD	LINE NOT DE	ETECTED	BY WATER L	EVEL.	
06-08-15	07:10	65	55	39	MU	IDLINE 39', B	ELOW GR	OUND SURF	ACE.	
06-09-15	07:00	106.25	95	8	DRILLER MUD	OBSERVER	RED AT 8' E	BELOW GROU	JND SUF	RFACE.
06-10-15	07:10	121.25	115	39	MU	JDLINE 39' BI	ELOW GRO	OUND SURFA	ACE.	
				_						
PIEZOME	TER INST	ALLED X	YES	NO SKI	ETCH SHOWN (NO				
STANDPIPE	E:	TYPE		ID, IN.	LEN	GTH, FT.		TOP ELEV.		
INTAKE EL	EMENT:	TYPE		OD, IN.	LEN	GTH, FT.		TIP ELEV.		
FILTER:		MATERIAL		OD, IN.	LEN	GTH, FT.		BOT. ELEV	·	
PAY QUA										
3.5" DIA. DF	RY SAMPLE	BORING	LIN. FT.	105	NO. OF 3" SHEL	BY TUBE SA	AMPLES			
3.5" DIA. U-	SAMPLE BO	ORING	LIN. FT.		NO. OF 3" UNDI	STURBED S	AMPLES			
CORE DRIL	LING IN RC	OCK	LIN. FT.	16.5	OTHER:					
BORING (CONTRAC	TOR		AQUIFI	ER DRILLING &	TESTING (CO., INC.			
DRILLER			JAMES		HELPERS			DANNY		
REMARKS	S			PIEZON	METER INSTALI	LED.				
RESIDEN	T ENGINE	ER	M	ATTHEW KRA	MER		DATE	06	6-09-15	
CLASSIFI	CATION C	HECK:	CHERYL J	. MOSS	TYPING CHE	CK:	ALEX	ANDRA PA	TRONE	
MRCE Form BS	S-1						ВО	RING NO.	M-4	4PA

5	SHEET 1 OF		
12319	FILE NO.	340 FAE	PROJECT:
+42.5	SURFACE ELEV.	BROOKLYN, NEW YORK	LOCATION:
IATTHEW KRAME	RES. FNGR. M/		

DAIIN		SAME	01 E			INEO.		IVIATITIEW KRAIVIER
DAILY PROGRESS	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA	DEPTH	CASING BLOWS	
09:30					**	0.5	DRILLED	**Concrete from 0' to
06-22-15					VOID	2	AHEAD	0.5'.
Monday					**	2.5	4" 3"	**Concrete from 2' to
Sunny							ii	2.5'.
-						5		2.5.
80°F						<u> </u>		
					CELLAR			
						10		
					**	12.5		**Concrete from 12.5' to
					**	13		13'.
	1D	14.0	12-6	Brown fine to medium sand, some silt, trace		15		
	-10	16.0	6-5	coarse sand, gravel (SM)				
	2D	16.0	2-9	Brown fine to coarse sand, some gravel, silt (SM)	F			
	20			brown line to coarse sand, some graver, sin (Sivi)	Г			
	0.0	18.0	11-13	D				
	3D	18.0	6-4	Brown fine to coarse sand, some silt, trace		00		
		20.0	11-13	gravel (SM)		20		
	4D	20.0	16-10	Top: Brown fine sand, sm silt, tr gravel (SM)				
		22.0	8-9	Bot: Brown fine to medium sand, trace silt				
				(SP-SM)				
						25		
	5D	25.0	9-8	Brown fine to coarse sand, some gravel, trace				REC=6"
		27.0	9-11	silt, silt pockets (SP-SM)				
			-	, , , , , , , , , , , , , , , , , , , ,				
						30		
	6D	30.0	7-8	Brown fine to medium sand, trace coarse sand,		- 00		
	OD	32.0	10-14	gravel, silt (SP-SM)				
		32.0	10-14	graver, siit (SF-Sivi)				
						25		
		05.0	- 44			35		
	7D	35.0	5-14	Brown gravelly fine to coarse sand, trace silt	S			
		37.0	14-19	(SP-SM)				
						40	₩	
	8D	40.0	6-13	Brown fine to coarse sand, trace silt, gravel				Wet sample.
		42.0	19-19	(SP-SM)				
						45		
	9D	45.0	6-12	Brown fine to medium sand, trace coarse sand,				
		47.0	12-12	gravel, silt (SP-SM)				
			·- ·-	g , (c				
						50		
	10D	50.0	12-15	Brown fine to medium sand, trace coarse sand,		30	 	
44:05	טטו						 	
14:25		52.0	19-19	gravel, silt (SP-SM)			▼	

BORING NO. M-5

M-5

5	SHEET 2 OF		
12319	FILE NO.	340 FAE	PROJECT:
+42.5	SURFACE ELEV.	BROOKLYN, NEW YORK	OCATION:
ATTHEW KRAMER	RES ENGR MA		

DAILY		SAMF	DI F			1 1	CASING	IVIATITIEW KRAIVIER
PROGRESS	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA			
							DRILLED	
							AHEAD	
07:50							3"	
06-23-15								
Tuesday	440	FF 0	40.04	Drawn fine to medium and trace sitt situ		55		
Sunny 80°F	11D	55.0 57.0	12-21 20-19	Brown fine to medium sand, trace silt, silty fine sand seams (SP-SM)				
80°F		37.0	20-19	line sand seams (SF-Sivi)			-	
						60		
	12D	60.0	12-14	Brown fine to medium sand, trace silt (SP-SM)				
		62.0	19-22					
	100	05.0	40.45	D 40D 40D 014		65		
	13D	65.0 67.0	16-15 18-18	Do 12D (SP-SM)			-	
		67.0	18-18					
							-	
						70		
	14D	70.0	18-18	Do 12D (SP-SM)				
		72.0	25-21					
						75		
	15D	75.0	24-26	Brown fine to medium sand, trace silt, mica	S			
		77.0	29-27	(SP-SM)				
							-	
						80	-	
	16D	80.0	20-27	Do 15D (SP-SM)		- 00		
	.02	82.0	30-32	C C C C C C C C C C				
						85		
	17D	85.0	24-31	Do 15D (SP-SM)				
		87.0	31-43					
						90		
	18D	90.0	30-28	Brown fine to medium sand, trace fine gravel,		30	+	
	100	92.0	32-36	coarse sand, silt, mica (SP-SM)			+	
		02.0	02 00					
						95		
	19D	95.0	20-24	Brown fine to medium sand, trace silt, mica				
		57.0	23-31	(SP-SM)				
						100		
	20D	100.0	19-21	Brown fine to coarse sand, trace gravel, coarse		100	_	
	200	100.0	19-21 25-27	sand, silt (SP-SM)			$-\bot$	
		102.0	25-21	Jana, Jil (OI -OIVI)	1			

BORING NO. M-5

M-5

MRCE Form BL-1

5	SHEET 3 OF		
12319	FILE NO.	340 FAE	PROJECT:
+42.5	SURFACE ELEV.	BROOKLYN, NEW YORK	LOCATION:
MATTHEW KRAMER	RES ENGR		·

BORING NO.

M-5

DAILY		SAME	DI E			IXEO.	CASING	IVIATITIEW KRAIVIER
DAILY PROGRESS	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA	DEPTH		REMARKS
Cont'd							DRILLED	
06-23-15							AHEAD	
Tuesday							3"	
Sunny							Ť	
80°F, 14:45					S	105		
	21D	105.0	24-26	Brown fine sand, trace silt, mica (SP-SM)		103		
06-24-15	210	107.0	28-30	blown line sand, trace siit, mica (Si -Sivi)				
⊢		107.0	20-30					
Wednesday						108.5		
Sunny						110		
75°F	000	440.0	0.40	000		110		WO 00 00
	22D	110.0	8-16	Stiff gray organic silty clay, trace shells (OH)				WC=30, pp=2.2
		112.0	20-21		С			
						115	\ \	
	23D	115.0	100/6"	Stiff gray organic silty clay, trace fine sand, shells	_	115.5		WC=38, pp=2.0
		115.5		(OH)	T	116	5*	Bedrock at 115.5'.
	1C	115.0	REC=80%	Medium hard slightly weathered to unweathered			5*	Coring starting at 115'.
		120.0	RQD=70%	gray gneiss, jointed, weathered joints			5*	*Coring time in
						120	5*	minutes per foot.
	2C	120.0	REC=87%	Hard unweathered gray gneiss, blocky	R		20*	
		124.0	RQD=80%				10*	
							7*	
						124	9*	
	3C	124.0	REC=100%	Top 1': Blk f-m sand, sm organic silt, tr mica (SM)	- -	125	4*	
		126.0		Bot: Hard unweathered gray gneiss, jointed			25*	
	4C	126.0		Hard unweathered gray gneiss, blocky				
		131.0	RQD=90%	gray grant, and	_			
_					R			
						130		
14:45						131		End of Boring at 131'.
14.45								End of Boning at 101.
								WC=Water Content
-								in percent of dry
-						135		weight.
-						133		weight.
								nn Daalaat
-								pp=Pocket
								Penetrometer
						4 40		Unconfined Compres-
						140		sive Strength in tsf.
						145		
						150		

BORING NO. M-5

New York, NY 10	F: 917 339-9400 FAC	Engineers LC55 Run No. REC/RQD 2 C 87.5/80 3 C 100/42	BORING NO. SHEET FILE NO. SURFACE ELEV. RES ENGR.	ROCK CORE SKETCH M-5 4 OF 5 12319 42.5 Modified Kramer
BOTTOM	JOXFS BOTTOM	JOXFIZ JOXFIZ JOXFI3	Jo'XSI Jo'XSI	ROCK CORE SKETCH LEGEND JOINTING J - Joint MB - Mechanical Break D - Angle w/ Horizontal // - Parallel X - Crossing F - Foliation U - Unfoliated or Unstratified JOINT SURFACE C - Curved J - Irregular S - Straight JOINT CONDITION 1 - Slick 2 - Smooth 3 - Rough SKETCH SYMBOLS Joint Healed Joint Broken Part of Core Not Recovered Cavities or Vugs in Core Clay Sand Empty Space

MUESER RUTLEDGE CONSULTING ENGINEERS

						BORING	NO.	M-5	;
						SHEET	5	OF	5
PROJECT			340 FA			FILE NO.	1	12319	
LOCATION		BROOKI	YN, NE	W YORK		SURFAC	E ELEV.	+4	12.5
BORING LOCATION	ON .	SEE BORIN	IG LOC	CATION PLA	N	DATUM		NAVD 88	3
						_			
BORING EQUIPM	ENT AND ME	ETHODS OF S	STABILI	ZING BOREH	<u>OLE</u>				
	TYPE	OF FEED					_		
TYPE OF BORING R	ig duri	NG CORING		CASING L	JSED	X	YES	NO	
TRUCK	MECI	HANICAL		DIA., IN.	4	DEPTH, F	T. FROM	0T	O 40
SKID	HYDF	RAULIC	Χ	DIA., IN.	3	_DEPTH, F	T. FROM	0T	O 115
BARGE	OTHE	ER		DIA., IN.		_DEPTH, F	T. FROM	T	0
OTHER CME I	_C55								
							-		
TYPE AND SIZE C					MUD USED	l————	YES	NO	
	D. D. SPLIT SF	POON			R OF ROTARY BIT	T, IN.		2-7/8, 3-7/	
U-SAMPLER				TYPE OF	DRILLING MUD			BENTONITE (3EL
S-SAMPLER							7		
CORE BARREL NQ				AUGER U			YES	X NO	
CORE BIT NQ	2"			TYPE ANI	D DIAMETER, IN.				
DRILL RODS 2"									
					HAMMER, LBS.	140	_	E FALL, IN.	30
					R HAMMER, LBS.	140	_AVERAGI	E FALL, IN.	30
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	00001/47101	NO IN DODE!	101 5	*USED AU	JTOMATIC HAMMI	=R.			
WATER LEVEL OF				DEDTILIO					
DATE TIME	DEPTH (DEPTH TO WATER		CONDITIC	NIS OF OR	SERVATION	
06-23-15 07:00	50	40 40		50				M OF HOLE.	
00-23-13 07.00	30	4	,	30		WODLINE	AIBOIIC	NI OI TIOLL.	
	U.	*							
PIEZOMETER INS	TALLED	YES	X	NO SKI	ETCH SHOWN (NC			
STANDPIPE:	TYPE			ID, IN.	LEN	GTH, FT.		TOP ELEV.	
INTAKE ELEMENT:	TYPE			OD, IN.	LEN	GTH, FT.		TIP ELEV.	
FILTER:	MATERIAL			OD, IN.	LEN	GTH, FT.		BOT. ELEV.	
PAY QUANTITIES									
3.5" DIA. DRY SAMP	LE BORING	LIN. FT.		115	NO. OF 3" SHEL	BY TUBE S	AMPLES		
3.5" DIA. U-SAMPLE	BORING	LIN. FT.			NO. OF 3" UNDI	STURBED S	SAMPLES		
CORE DRILLING IN F	ROCK	LIN. FT.		116	OTHER:			-	
BORING CONTRA	CTOR			AQUIF	ER DRILLING &	TESTING	CO., INC.		
DRILLER		JAMES			HELPERS	-			
REMARKS					DUTED UPON C	OMPLETION			
RESIDENT ENGIN	-			TTHEW KRAI			DATE	-	22-15
CLASSIFICATION	CHECK:	CHE	RYL J.	MOSS	TYPING CHEC	CK:		ANDRA PATE	
MRCE Form BS-1							ВО	RING NO.	M-5

		SHEET 1 OF	5
PROJECT:	340 FAE	FILE NO.	12319
OCATION:	BROOKLYN, NEW YORK	SURFACE ELEV.	+42.5
		RES. ENGR. MA	TTHEW KRAMER

54111/		CAMI				IXLO	T	IVIATITIEW KRAIVIER
DAILY PROGRESS	NO.	SAMI DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA	DEPTH	CASING BLOWS	REMARKS
13:30					CONC	1		**Asphalt from 0' to 0.4'.
06-30-15							AHEAD	
Tuesday							4" 3"	
Sunny							II	
1						5		
80°F						3		
					CELLAR			
						40		
						10		
					**	12.5		**Concrete from 12.5'
	1D	13.0	6-8	Brown fine to coarse sand, some silt, trace				to 13'.
		15.0	13-13	gravel, brick (Fill) (SP-SM)		15		
	2D	15.0	14-19	Brown fine to coarse sand, some silt, trace				
		17.0	13-17	brick, concrete (Fill) (SM)	F			
	3D	17.0	20-26	Brown fine to coarse sand, some silt, trace	-			
		19.0	27-30	gravel (SM)				
	4D	19.0	8-28	Brown fine to coarse sand, some silt, gravel		20		REC=6"
14:30		20.8	34-80/3"	(SM)		20.8		Rock fragments in
07:30								tip.
07-01-15								•
Wednesday								Boulder from 23' to 25'.
Overcast					Т	25		
70°F	5D	25.0	21-22	Red brown fine to coarse sand, some silt, gravel				
		27.0	19-16	(SM)				
						28.5		
						30		
	6D	30.0	11-12	Brown fine to medium sand, trace coarse	,			
	_	32.0	13-15	sand, gravel, silt (SP-SM)				
				, , , , , , , , , , , , , , , , , , , ,				
					S			
						35		
	7D	35.0	12-16	Brown fine to medium sand, trace gravel,	,			
		37.0	18-28	coarse sand, silt (SP-SM)				
				, , , , , , , , , , , , , , , , , , , ,				
						38.5		
						40		
	8D	40.0	17-20	Brown gravelly fine to coarse sand, some silt				
		42.0	14-31	(SM)	Т			
		12.0		(Cili)				
						45		
	9D	45.0	13-15	Brown fine to coarse sand, trace gravel, silt		-10	*	Wet sample.
	7.5	47.0	13-12	(SP-SM)				
				()				
					S			
						50		
	10D	50.0	14-16	Brown fine to medium sand, trace silt (SP-SM)				
	.00	52.0	17-16	(or own)				
		JZ.U	17-10		1		▼	

M-6

MRCE Form BL-1

5	SHEET 2 OF		
12319	FILE NO.	340 FAE	PROJECT:
+42.5	SURFACE ELEV.	BROOKLYN, NEW YORK	LOCATION:
IATTHEW KRAMER	RES. ENGR. M		

DAILY		SAMI	DI E			IXEO.	CASING	IVIATITIEW KRAIVIER
	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA	DEDTH		REMARKS
PROGRESS	NO.	DEPIR	BLUVV5/6	SAMIFLE DESCRIPTION	SIKAIA	DEPIN	DRILLED	
Cont'd								
07-01-15							AHEAD 3"	
Wednesday							3	
Overcast						55		
70°F	11D	FF 0	45.40	Drawn fine to madium cond trace course		33		
	טוו	55.0	15-18	Brown fine to medium sand, trace coarse				
		57.0	18-20	sand, silt (SP-SM)				
						60		
	12D	60.0	14-18	Do 11D (SP-SM)		00		
	120	62.0	19-23	DO 11D (3F-3W)				
		02.0	19-23					
						65		
	13D	65.0	17-21	Do 11D (SP-SM)		03		
	130	67.0	24-27	DO 11D (SI -SIW)				
		07.0	24-21					
						70		
	14D	70.0	21-26	Do 11D (SP-SM)		70		
	140	72.0	29-29	DO 11D (SI -SIW)				
		12.0	29-29					
						75		
	15D	75.0	21-26	Do 11D (SP-SM)		7.5		
	130	77.0	33-31	DO 11D (SI -SIW)	S			
		77.0	33-31					
						80		
	16D	80.0	20-28	Do 11D (SP-SM)		- 00		
	100	82.0	28-36	DO TTD (GI -GIW)				
		02.0	20 00					
						85		
	17D	85.0	31-42	Do 11D (SP-SM)				
	.,,	87.0	45-51	Do 11D (Gr Givi)				
		07.0	10 01					
						90		
	18D	90.0	30-28	Do 11D (SP-SM)				
	.02	92.0	45-41	Se 115 (St Siii)				
		02.0	.0					
						95		
	19D	95.0	23-28	Do 11D (SP-SM)				
		97.0	30-36	(3. 2)				
		20	-0 00					
14:45						100		
07:15	20D	100.0	20-21	Brown fine to medium sand, trace gravel,				
07-02-15		102.0	27-36	coarse sand, silt (SP-SM)				
	1		~~		1	1		

BORING NO. M-6

M-6

5	SHEET 3 OF		
12319	FILE NO.	340 FAE	PROJECT:
+42.5	SURFACE ELEV.	BROOKLYN, NEW YORK	LOCATION:
ATTHEW KRAMER	RES ENGR MA		

PRODUCTION STRATA STRATA	DAILY		SAM	PI F			1,120	CASING	IVI) (TTTL VV TCTO (IVILTO
Cord		NO			SAMDLE DESCRIPTION	CTDATA	DEDTU		
10 10 10 10 10 10 10 10		NO.	DEPIR	BLOWS/6	SAMPLE DESCRIPTION	SIKAIA			
Thursday Sumy				-					
Summy									
1925 210 105.0 19-24 25-40	Thursday							3"	
210 105.0 19-24 25-40	Sunny								
107.0 25-40 110.1 111.17 22-36	75°F					S	105		
107.0 25-40 110.1 111.17 22-36		21D	105.0	19-24	Brown fine to medium sand, trace silt (SP-SM)				
110 112 11-17 11-17 11-17 12-36 110 112 11-17 110 112 110 113 110 118					,				
22D 110.0 111-17 112.0 22-36									
22D 110.0 111-17 112.0 22-36				_			108 5		
220 110.0 11-17 22-36 sand, trace shells (OH)				-					
112.0 22-36 sand, trace shells (OH)		000	440.0	44.47	Otiff and the state of the stat		110		WO 05
To 113.0 REC=96% Hard slightly weathered to unweathered gray gneiss, blocky, weathered joints 118.0 REC=100% 123.0 RQD=77% Hard to medium hard slightly weathered to unweathered to unw		220				С			
113.0 REC=96% Hard slightly weathered to unweathered gray gnelss, blocky, weathered joints REC=100% 123.0 RQD=77% Hard to medium hard slightly weathered to unweathered gray gnelss, jointed, weathered in unweathered gray gnelss, jointed, weathered in this REC=100% RQD=77% RQD=77% Hard to medium hard slightly weathered to unweathered gray gnelss, jointed, weathered in the gray gnelss, jointed, weathered gray gnelss, jointe			112.0	22-36	sand, trace shells (OH)				
118.0 RQD=90% gneiss, blocky, weathered joints REC=100% Hard to medium hard slightly weathered to unweathered gray gneiss, jointed, weathered to unweathered gray gneiss, jointed, weathered in joints REC=100% RQD=77% RQD=							113	\ \	
REC=100% Hard to medium hard slightly weathered to unweathered gray gneiss, jointed, weathered to unweathered gray gneiss, jointed, weathered ionints R R R R R R R R R		1C							
REC=100% RQD=77% Hard to medium hard slightly weathered to unweathered gray gneiss, jointed, weathered RQD=77% RQD=77% Hard to medium hard slightly weathered to unweathered gray gneiss, jointed, weathered RQD=77% RQD=77%			118.0	RQD=90%	gneiss, blocky, weathered joints		115		*Coring time in
REC=100% Hard to medium hard slightly weathered to unweathered gray gneiss, jointed, weathered R S S S S S S S S S								7*	minutes per foot.
Table Received Hard to medium hard slightly weathered to unweathered gray gneiss, jointed, weathered Red S* 6* 120 6* 6* 6* 6* 6* 6* 6* 6								5*	
123.0		2C	118.0	REC=100%	Hard to medium hard slightly weathered to	_			
120 6* 6* 6* 123 6* End of Boring at 123'. 125						R			
123 6° 123 6° 123 6° 123 6° 125 WC=Water Content in percent of dry weight. 130 135 135 140 145			120.0	TODE 11 70			120		
123 6° End of Boring at 123'.				-	Jonnes		120		
123 6* End of Boring at 123'. 125 WC=Water Content in percent of dry weight. 130 135 140 140 145				-					
125 WC=Water Content in percent of dry weight. 130 135 140 145				-			400		
130 135 140 145				-			123	6*	End of Boring at 123'.
130 135 140 145									
130							125		
130 135 140 145									in percent of dry
130 135 140									weight.
135 140 145									
135 140 145				-					
135 140 145				-			130		
140				1					
140				-					
140				-					
140				-					
140				-			405		
145							135		
145									
145									
145									
145									
145				1			140		
				1					
				1					
				1					
				-					
				-			1/15		
150		-		-			143		
150				-					
150									
150									
							150		
		L							

M-6

New York, NY 10 T: 917 339-9300 www.mrce.com PROJECT: 340 FA	F: 917 339-9400 E Ilyu	ess essential es	BORING NO. SHEET FILE NO. SURFACE ELEV. RES ENGR.	ROCK CORE SKETCH M-6 4 OF 5 12319 ×42.5 Matthew Krame
RUN NO. REC/RQD	Run No. REC/RQD	Run No. REC/RQD 2	Run No. REC/RQD C 76/90 TOP TOP	

MUESER RUTLEDGE CONSULTING ENGINEERS

								BORIN	G NO.		M-6	
								SHEET		5 OF		5
PROJEC [®]	т				FAE			FILE N	o	123	19	
LOCATIO	ON		BROC	KLYN,	, NEW \	ORK/		SURFA	CE ELEV.		+42.5	5
BORING	LOCATION	\	SEE BO	RING L	OCATI	ON PLA	N	DATUN	1	NAVE	88 C	
								_				
BORING	EQUIPME	NT AND ME	THODS C	F STAE	BILIZING	BOREH	<u>OLE</u>					
		TYPE	OF FEED									
TYPE OF E	BORING RIG	DURI	NG CORING	3		CASING U	JSED	>	YES	NO		
TRUCK		MECH	IANICAL			DIA., IN.	4	DEPTH,	FT. FROM	0	TO	45
SKID		HYDR	AULIC		X	DIA., IN.	3	DEPTH,	FT. FROM	0	то	113
BARGE		OTHE	R			DIA., IN.		DEPTH,	FT. FROM		ТО	
OTHER	CME LC	255						_				
TYPE AN	ID SIZE OF	:				DRILLING	MUD USED	>	YES	NO		
D-SAMPLE	R 2" O.	D. SPLIT SP	NOC			DIAMETE	R OF ROTARY BIT	ī, IN.		2-7/8,	3-7/8	
U-SAMPLE	R					TYPE OF	DRILLING MUD			BENTONI	TE GEL	
S-SAMPLE	R											
CORE BAF	RREL NQ					AUGER U	SED		YES	X NO		
CORE BIT	NQ 2	ıı				TYPE AN	D DIAMETER, IN.					
DRILL ROI	DS 2"											
						*CASING	HAMMER, LBS.	140	AVERAG	SE FALL, IN.	3	0
						*SAMPLE	R HAMMER, LBS.	140	AVERAG	SE FALL, IN.	3	0
						*USED AL	JTOMATIC HAMME	 ER.				
WATER L	EVEL OBS	SERVATION	IS IN BOR	EHOLE	_							
		DEPTH C	F DE	PTH OF	DE	PTH TO						
DATE	TIME	HOLE	C	ASING	٧	VATER		CONDIT	IONS OF O	BSERVATION	N	
							NO	WATER L	EVEL OBSE	RVATIONS I	MADE.	
		-		_								
<u>PIEZOME</u>	ETER INST	ALLED	YES		X NO	SK	ETCH SHOWN C	ON				
STANDPIP	E:	TYPE				ID, IN.	LEN	GTH, FT.		TOP ELE	V.	
INTAKE EL	LEMENT:	TYPE				OD, IN.	LEN	GTH, FT.		TIP ELEV	· .	
FILTER:		MATERIAL				OD, IN.	LEN	GTH, FT.	-	BOT. ELE	V.	
PAY QUA	<u>ANTITIES</u>											
3.5" DIA. D	RY SAMPLE	BORING	LIN. F	т	113		NO. OF 3" SHEL	BY TUBE	SAMPLES			
3.5" DIA. U-SAMPLE BORING LIN. F							NO. OF 3" UNDIS	STURBED	SAMPLES			
CORE DRI	LLING IN RO	OCK	LIN. F	т	10		OTHER:					
BORING	CONTRAC	TOR				AQUIF	ER DRILLING &	TESTING	3 CO., INC	<u>. </u>		
DRILLER			JAN	1ES			HELPERS			DANNY		
REMARK	S				BOREH	OLE GRO	OUTED UPON C	OMPLET	TON.	<u></u>		·
RESIDEN	IT ENGINE	ER			MATTHI	EW KRAI	MER		DATE	(06-30-1	15
CLASSIF	ICATION C	HECK:	C	HERYL	J. MOS	S	TYPING CHEC	CK:	ALEX	XANDRA P	ATRON	1E
MRCE Form B	S-1	-					_		ВС	ORING NO.		M-6

 PROJECT:
 340 FAE
 SHEET 1 OF
 5

 LOCATION:
 BROOKLYN, NEW YORK
 FILE NO.
 12319

 SURFACE ELEV.
 +42.5

 RES. ENGR.
 MATTHEW KRAMER

DAILY		SAME	DI E			I I	CASI		NIATITIEW RRAINER		
PROGRESS				SAMPLE DESCRIPTION	STRATA	DEPTH BLOWS					
08:45	140.	DEI III	BLOVVO/0	GAIN LE BEGORN HON	**				**Concrete from 0' to		
06-25-15						0.5			0.5'.		
							4"		Drilled ahead to 13'.		
Thursday							4 T	ა T	Diffied affead to 13.		
Sunny						_			-		
85°F						5		1	<u> </u>		
									_		
					CELLAR						
						10					
					**	12.5			**Concrete from 12.5'		
	1D	13.0	4-7	Brown fine sand, some silt, trace gravel,					to 13'.		
		15.0	7-13	concrete (Fill) (SM)	F	15					
	2D	15.0	13-18	Brown fine to medium sand, some silt, gravel	Г]		
		17.0	22-21	(Fill) (SM)		17			1		
	3D	17.0	12-16	Brown fine to coarse sand, some gravel (SM)							
		19.0	18-19	, ,				t	1		
	4D	19.0	4-14	Brown gravelly fine to coarse sand, trace silt,		20		t	1		
		21.0	17-21	brick (SP-SM)				+	1		
		21.0		Short (et em)					-		
									-		
									-		
						25		-	-		
	5D	25.0	10-10	Prown fine to energy and trace ground silt		23		╆	-		
	טט			Brown fine to coarse sand, trace gravel, silt				╁	-		
		27.0	14-26	(SP-SM)				-	-		
					T			-	-		
						20			-		
	0.0	00.0	44.40	D		30		╄-			
	6D	30.0	11-13	Brown fine to coarse sand, some gravel, trace				-			
		32.0	11-15	silt (SP-SM)							
						35					
	7D	35.0	8-19	Brown gravelly fine to coarse sand, trace silt					REC=6"; rock fragments		
		37.0	27-25	(SP-SM)					in tip of spoon.		
						38.5					
						40					
	8D	40.0	13-12	Brown fine to coarse sand, trace gravel, silt					Wet sample.		
		42.0	15-14	(SP-SM)							
									1		
									1		
						45			1		
	9D	45.0	15-18	Brown fine to coarse sand, trace gravel, silt	S				1		
		47.0	23-22	(SP-SM)				1	1		
									1		
								t	1		
						50	1	1	1		
	10D	50.0	12-13	Brown fine to medium sand, trace silt (SP-SM)			T .	T	†		
	. 35	52.0	15-20					+	-		
	1	02.0	10-20					•			

M-7

5	SHEET 2 OF		
12319	FILE NO.	340 FAE	PROJECT:
+42.5	SURFACE ELEV.	BROOKLYN, NEW YORK	LOCATION:
MATTHEW KRAMER	RES ENGR M		

DAILY		SAMI	PLE				CASING	TO THE WIND OWNER
PROGRESS	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA	DEPTH		REMARKS
Cont'd	110.	<i>D</i> 2	B20110/0	97.11.11 <u>22 22 37.11 11 31.1</u>	•		DRILLED	112
06-25-15							AHEAD	
Thursday							3"	
Sunny							Ĭ	
85°F						55		
03 1	11D	55.0	15-16	Brown fine to medium sand, trace silt (SP-SM)		- 33		
14:30	110	57.0	16-21	brown line to mediam sand, trace sit (or -ow)				
07:30		37.0	10-21					
06-26-15								
Friday						60		
	12D	60.0	15-16	Do 11D (SP-SM)		- 00		
Overcast	120	62.0	19-32	DO 11D (SF-SWI)				
75°F		02.0	19-32					
						CE		
	400	05.0	40.45	D- 44D (OD OM)		65		
	13D	65.0	12-15	Do 11D (SP-SM)				
		67.0	15-27					
						70		
	14D	70.0	17-23	Do 11D (SP-SM)				
		72.0	23-28					
						75		
	15D	75.0	22-29	Do 11D (SP-SM)	S			
		77.0	32-49		3			
						80		
	16D	80.0	20-29	Do 11D (SP-SM)				
		82.0	29-41	, ,				
						85		
	17D	85.0	30-36	Do 11D (SP-SM)				
		87.0	32-40	50 115 (C1 GIII)				
		01.0	02 10					
						90		
	18D	90.0	26-30	Do 11D (SP-SM)		30		
	יטטו	92.0	35-34	O O O O O O O O O				
	-	₹2.0	35-3 4					
	-							
	-					95		
	100	05.0	20.40	Do 11D (SD SM)		90		
	19D	95.0	30-40	Do 11D (SP-SM)				
		97.0	47-50					
						400		
						100		
	20D	100.0	26-29	Brown fine to medium sand, trace silt (SP-SM)				
		102.0	30-31				▼	

BORING NO. M-7

M-7

5	SHEET 3 OF		
12319	FILE NO.	340 FAE	PROJECT:
+42.5	SURFACE ELEV.	BROOKLYN, NEW YORK	OCATION:
MATTHEW KDAMED	DES ENCD		·

DAILY		SAMI	PLE				CASING	
PROGRESS	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA	DEPTH	BLOWS	REMARKS
Cont'd							DRILLED	
06-26-15							AHEAD	
Friday							3"	
Overcast								
75°F					S	105		
	21D	105.0	21-28	Brown fine to medium sand, trace silt (SP-SM)				
		107.0	33-49	·				
						108.5		
						110		
	22D	110.0	8-11	Stiff gray organic silty clay, trace fine sand (OH)				WC=22, pp=2.25
		112.0	17-21					
					С			
						115		
	23D	115.0	9-13	Stiff gray organic silty clay, trace fine sand, peat,				WC=47, pp=3.0
14:30		116.8		mica (OH)		116.8	•	
08:30	1C	117.0		Medium hard slightly weathered to unweathered	Т		1*	*Coring time in
06-29-15		122.0	RQD=64%	gray gneiss, jointed to moderately jointed, iron		118.5	2*	minutes per foot.
Monday			v.	stained & weathered joints		120	4*	
Sunny							2*	
80°F							3*	
	2C	122.0		Hard slightly weathered to unweathered gray			5*	
		127.0	RQD=80%	gneiss, blocky, iron stained joints			4*	
					R	125	6*	
					K		5*	
							5*	
	3C	127.0		Hard unweathered gray gneiss, blocky,			8*	
		132.0	RQD=93%	weathered joints		400	8*	
						130	8* 8*	
						422	8*	First of Davis as at 4001
13:30						132	8	End of Boring at 132'.
								WC=Water Content
						135		in percent of dry
			•			133		weight.
								weight.
								pp=Pocket
								Penetrometer
						140		Unconfined Compres-
								sive Strength in tsf.
								5.1.5 S.1.51.19.1. 11. 15.1.
						145		
			•					
						150		

M-7

PROJECT: LOCATION: TEST/INSP.	w York, NY 10 917 339-9300 vv.mrce.com	F: 917 339-9400	ngineers	BORING NO. SHEET FILE NO. SURFACE ELEV. RES ENGR.	ROCK CORE SKETCH M-7 4 of 5 12319 *42.5 Methew Kramer
Run No.	REC/RQD	Run No. REC/RQD	Run No. REC/RQD	Run No. REC/RQD	
	TOP _	3C 100/93	2C 90/80	TOP	ROCK CORE SKETCH
		Jo'//FS	J30%FS	Broker Janusion = 0.1 feet	LEGEND JOINTING J - Joint MB - Mechanical Break Đ, - Angle w/ Horizontal // - Parallel X - Crossing F - Foliation S - Stratification U - Unfoliated or Unstratified JOINT SURFACE C - Curved I - Irregular S - Straight
	воттом	ВОТТОМ	воттом	воттом	Empty Space

NOTES

		BORING		BORING	NO.	M-7			
						SHEET	5	OF	5
PROJECT			340 FA			FILE NO.	1	12319	
LOCATION		BROOKI	YN, NE	W YORK		SURFAC	E ELEV.	+4	2.5
BORING LOCATION	ON .	SEE BORIN	IG LOC	CATION PLAI	N	DATUM		NAVD 88	3
BORING EQUIPM	ENT AND M	ETHODS OF S	STABILI	ZING BOREH	<u>OLE</u>				
	TYPE	OF FEED					_		
TYPE OF BORING R	IG DUR	ING CORING		CASING L	JSED	X	YES	NO	
TRUCK	MEC	HANICAL		DIA., IN.	4	DEPTH, F	T. FROM	0T	O 50
SKID	HYD	RAULIC	Χ	DIA., IN.	3	_DEPTH, F	T. FROM	0T0	0 117
BARGE	OTH	ER		DIA., IN.		_DEPTH, F	T. FROM	T	o
OTHER CME	LC55								
							7		
TYPE AND SIZE C	F:			DRILLING	MUD USED	X	YES	NO	
D-SAMPLER 2" (D. D. SPLIT SF	POON		DIAMETE	R OF ROTARY BIT	Γ, IN.		2-7/8, 3-7/	
U-SAMPLER				TYPE OF	DRILLING MUD			BENTONITE (GEL
S-SAMPLER							7		
CORE BARREL NQ				AUGER U	SED		YES	X NO	
CORE BIT NQ	2"			TYPE ANI	D DIAMETER, IN.				
DRILL RODS 2"									
				*CASING	HAMMER, LBS.	140	_	E FALL, IN.	30
				*SAMPLE	R HAMMER, LBS.	140	AVERAGI	E FALL, IN.	30
				*USED AL	JTOMATIC HAMMI	ER.			
WATER LEVEL OF									
DATE TIME	DEPTH	-		DEPTH TO		CONDITIO		CEDVATION	
DATE TIME	HOLE			WATER				SERVATION	
06-26-15 07:15	60	5	J	20		IVI	UDLINE AT	20'.	
		<u> </u>							
PIEZOMETER INS	STALLED	YES	X	NO SKI	ETCH SHOWN (NC			
STANDPIPE:	TYPE			ID, IN.	LEN	GTH, FT.		TOP ELEV.	
INTAKE ELEMENT:	TYPE			OD, IN.	LEN	GTH, FT.		TIP ELEV.	
FILTER:	MATERIAL			OD, IN.	LEN	GTH, FT.		BOT. ELEV.	
					·			<u>—</u>	
PAY QUANTITIES									
3.5" DIA. DRY SAMP	LE BORING	LIN. FT.		117	NO. OF 3" SHEL	BY TUBE S	AMPLES		
3.5" DIA. U-SAMPLE	BORING	LIN. FT.	·		NO. OF 3" UNDI	STURBED S	SAMPLES		
CORE DRILLING IN I	ROCK	LIN. FT.		15	OTHER:				
BORING CONTRA	CTOR			AQUIFE	ER DRILLING &	TESTING	CO., INC.		
DRILLER		JAMES	3		HELPERS			DANNY	
REMARKS				BOREHOLI	E UPON COMPL	ETION.			
RESIDENT ENGIN	IEER	-	MA	TTHEW KRAN	MER		DATE	06-2	25-15
CLASSIFICATION	CHECK:	CHE	RYL J. I	MOSS	TYPING CHEC	CK:	ALEX	ANDRA PATE	RONE
MRCE Form BS-1					_		ВО	RING NO.	M-7

 PROJECT:
 340 FAE
 SHEET 1 OF
 5

 LOCATION:
 BROOKLYN, NEW YORK
 FILE NO.
 12319

 SURFACE ELEV.
 +42.5

 RES. ENGR.
 MATTHEW KRAMER

BORING NO.

M-8

		CANIE				KES		MATTHEW KRAMER
DAILY	NO	SAME		CAMPLE DECORIDION	OTDATA	DEDT	CASING	
PROGRESS	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION		DEPTH	BLOWS	REMARKS
10:00					CONC			Concrete topping slab.
07-06-15						1.5		Drilled ahead to 13'.
Monday							4" 3"	
Sunny								
80°F						5		
					0511.45			
					CELLAR			
						10		
						-10		
						12.5		**Concrete from 12 F!
	40	40.0	<i>-</i> -	Description to an adjust and a second to the top of	**	12.5		**Concrete from 12.5'
	1D	13.0	5-7	Brown fine to medium sand, some silt, trace		4.5		to 13'.
		15.0	11-14	gravel, coarse sand (Fill) (SM)	F	15		
	2D	15.0	12-14	Do 1D (Fill) (SM)	-			
		17.0	17-21			17		
	3D	17.0	23-22	Brown fine to coarse sand, some gravel, silt				
		19.0	9-63	(SM)				
	4D	19.0	10-5	Brown gravelly fine to coarse sand, trace silt		20		
		21.0	40-23	(SP-SM)				
					_			
					Т			
						25		Boulder from 25' to 28'.
	5NR	25.0	50/0"	No recovery				Boulder Helli 20 to 20 :
	SIVIX	27.0	30/0	140 recovery				
		27.0						
						29		
						30		
	CD.	20.0	40.44	Description to an edition and topic will be a		30		
	6D	30.0	13-14	Brown fine to medium sand, trace silt, gravel,				
14:45		32.0	15-22	coarse sand (SP-SM)				
07:15								
07-07-15					S			
Tuesday						35		
Overcast	7D	35.0	12-15	Brown fine to coarse sand, trace gravel, silt				
80°F		37.0	16-20	(SP-SM)				
						38.5		
						40		
	8D	40.0	27-45	Brown fine to coarse sandy gravel, some silt	_			Rock in spoon tip.
		42.0	32-22	(GM)	Т			
						43.5		
						45		
	9D	45.0	5-17	Brown fine to coarse sand, trace gravel, silt				
	50	47.0	15-17	(SP-SM)		<u> </u>		
		47.0	13-17	(OI -OIVI)				
					S	<u> </u>		
						EO		
	465	50.0	40.40			50		
	10D	50.0	13-16	Brown fine to medium sand, trace coarse sand,		<u> </u>		
		52.0	22-18	gravel, silt (SP-SM)			▼ ▼	

BORING NO. M-8

5	SHEET 2 OF		
12319	FILE NO.	340 FAE	PROJECT:
+42.5	SURFACE ELEV.	BROOKLYN, NEW YORK	LOCATION:
MATTHEW KRAMER	RES ENGR		· · · · · · · · · · · · · · · · · · ·

DAILY		SAME	PI F			CASING	I WINTER TO CONTENT
PROGRESS	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA	DEPTH BLOWS	
Cont'd	110.	DEI III	<i>BEO</i> 110,0	5/1111 <u>22 22 37 11 11 37 </u>	01101111	DRILLED	
07-07-15						AHEAD	-
Tuesday						4" 3"	
Overcast							
80°F						55 ▼	
	11D	55.0	11-16	Brown fine to medium sand, trace silt (SP-SM)		,	1
		57.0	17-23				
						60	
	12D	60.0	16-19	Do 11D (SP-SM)			
		62.0	20-22				
						65	
	13D	65.0	15-20	Brown fine to medium sand, trace silt (SP-SM)			
		67.0	24-36				
						70	
	14D	70.0	15-16	Brown fine to medium sand, trace silt (SP-SM)			
		72.0	24-25				
							_
						75	_
	1ED	75.0	24.24	Drown fine to madium and trace ailt (CD CM)		75	1
	15D	75.0	21-21	Brown fine to medium sand, trace silt (SP-SM)	S		_
		77.0	23-28				-
							-
						80	
	16D	80.0	20-27	Brown fine to medium sand, trace silt (SP-SM)			†
		82.0	29-30	Zionii mio to modium cana, nace cin (c. cin,			
							-
						85	
	17D	85.0	24-36	Brown fine to medium sand, trace silt (SP-SM)			
		87.0	34-40				
	465	00.0	20.22			90	
	18D	90.0	26-33	Brown fine to medium sand, trace coarse			-
		92.0	40-40	sand, silt (SP-SM)			-
							-
						95	-
	19D	95.0	29-29	Brown fine to medium sand, trace silt, mica			1
	. 55	97.0	35-30	(SP-SM)			-
							-
							1
						100]
	20D	100.0	24-28	Brown fine sand, trace silt (SP-SM)			
		102.0	34-32			▼	

BORING NO. M-8

M-8

5	SHEET 3 OF		
12319	FILE NO.	340 FAE	PROJECT:
+42.5	SURFACE ELEV.	BROOKLYN, NEW YORK	LOCATION:
MATTHEW KRAMER	RES ENGR M		

BORING NO.

M-8

DAILY		SAMI	DI E			I I	CASING	. IVIATITIEW KRAIVIER
DAILY PROGRESS	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA	DEPTH	BLOWS	
Cont'd 07-07-15 Tuesday Overcast					s	105	DRILLE AHEAD 3"	
80°F	21D	105.0 107.0	21-24 25-30	Brown fine to medium sand, trace coarse sand, silt, mica (SP-SM)		105		<u>-</u> - -
45.00	22D	110.0 112.0	13-10 13-17	Stiff gray organic silty clay, trace shells (OH)		108.5 110		WC=31, pp=1.8
15:00 07:15 07-08-15 Wednesday		112.0	13-17		С	115		
Overcast 75°F	23D	115.0 117.0	5-9 19-38	Top: Stiff gray organic silty clay, trace mica (OH) Bot: Black peat, some wood (Pt)	0	116		23D Top: WC=39, pp=1.25 23D Bot: WC=127
	1C	118.0 123.0		Intermediate slightly weathered to moderately weathered gray schistose gneiss, jointed to closely jointed, weathered joints		120	4 4 4	minutes per foot.
	2C 3C	123.0 124.0 124.0	RQD=0%	Weathered slightly weathered gray schistose gneiss, broken, weathered joints Medium hard slightly weathered to unweathered	R	125	4 1/20 4* 4*	
	4C	129.0		gray schistose gneiss, blocky, iron stained & weathered joints Hard unweathered gray schistose gneiss,	K	130	4* 4* 4* 5*	
		134.0		blocky, iron stained joints			5* 5* 5*	
15:00						134 135	5*	End of Boring at 134'. WC=Water Content in percent of dry
						140		weight. pp=Pocket Penetrometer
						145		Unconfined Compressive Strength in tsf.
						150		_

BORING NO. M-8

New York NY 10122 SAP 399-900 F 97 339-9400 SHEET	Mueser Rut	edge Consulting E	ngineers		ROCK CORE SKETCH
WWW.MICE.COM PROJECT: 340 FHE LOCATION: Specifyin TEST/INSP. EQUIPMENT TEST/INSP. EQUIPMENT TOP TOP TOP TOP TOP TOP TOP T	New York, NY 10	122		BORING NO.	M-8
FILE NO. 12.319 SURFACE ELEV. 72.5 SURFACE ELEV. 72.5 RES INGR. MCK REC/RQD RUN NO. REC/RQD ROCK CORE SETCH LEGEND JON/IFT 2 ROCK CORE SETCH RUN NO. REC/RQD JON/IFT 2 ROCK CORE SETCH RUN NO. REC/RQD ROCK CORE SETCH RUN NO. REC/R		. 917 339-9400		SHEET	4 of 5
REF. CODES/STANDARDS RUN NO. REC/RQD RUN NO. REC/RQD TOP TOP TOP TOP TOP ROCK CORE SKETCH LEGEND JOINTING					12319
RUN NO. REC/RQD RUN NO. REC/RQD RUN NO. REC/RQD C 4-8/40	LOCATION: Brook				
Run No. REC/RQD Run No. REC/RQD		1 CME 55	1055	RES ENGR.	MCK
TOP TOP TOP TOP TOP TOP TOP TOP	REF. CODES/STANDARDS				
TOP TOP TOP TOP TOP TOP TOP ROCK CORE SKETCH LEGEND LIDINTING J. Joint MB. Mechanical Break P Angle w/ Horizontal // Parallel X. Crossing F. Foliation S. Stratification U. Unfoliated or Unstratified Unstratified Unstratified Introduction I. Irregular S. Straight JOINT CONDITION 1. Sick 2. Smooth 3. Rough SECTICH SYMBOLS Joint Angly W. J. Joint Meaded Joint Broken Part of Gore Note Recovered Cavities or Vugs in Core Clay Sand Empty Space	Run No. REC/RQD	Run No. REC/RQD	Run No. REC/RQD	 	
## Provided The Provided Provi		46 93/93	3C 74/74	·	
## Provided Services or Yugs in Core Clay Sand Erropty Space Empty Space Emp	ТОР	TOP	TOP	TOP	
J. Joint MB. Mechanical Break D. Angle w/ Horizontal //- Parallel X. Crossing F. Foliation S. Stratification U. Unfoliated or Unstratified TON XF52 Son XF52 Son XF52 MB 0 X U 5 2 MB 0 X				2 gravel	
MB. Mechanical Break B1. Angle w/ Horizontal /// Parallel X. Crossing F. Foliation S. Stratification U. Unfoliated or Unstratified JONT SURFACE C. Curved 1. Irregular S. Straight JONT CONDITION 1. Slick 2. Smooth 3. Rough JONT SURFACE Z. Smooth 3. Rough Joint Joint Broken Part of Core Not Recovered Clay Sand Empty Space			1720°//FC2		
JONFIZ JONFIZ JONFIZ JONFIZ JONFIZ JONFIZ JONFIZ JONFIZ JONTSURFACE C. Curved Intregular S. Straight JOINT CONDITION 1. Sick 2. Smooth 3. Rough SKETCH SYMBOLS Joint MRONUL JONT CONDITION 1. Sick 2. Smooth 3. Rough SKETCH SYMBOLS Joint MRONUL MRONUL JOINT CONDITION 1. Sick 2. Smooth 3. Rough SKETCH SYMBOLS Joint MRONUL MRON					MB - Mechanical Break
JOS X FIZ. JOS X		 			Đ _i - Angle w/ Horizontal
JONNET 2 JONNET 2 JONNET 2 JONNET 2 JONNET 2 JONNET SUPPACE C. Curved 1. Irregular S. Stratified JOINT CONDITION 1. Slick 2. Smooth 3. Rough SKETCH SYMBOLS Joint Joint Mealed Joint Broken Part of Core Not Recovered Cavities or Vugs in Core Clay Sand Empty Space					// - Parallel
Job XFIZ Job XFSZ JO					X - Crossing
J30% F52 J00 X F52 J50 X F	1 1 1		J6//FI2-	JOXFIZ -	F - Foliation
JOS XFS2 JOS XF				Tayer	S - Stratification
J30°X FS 2 J00°X	1	MB			1
JON XFIZ JOINT CONDITION 1 - Silck 2 - Smooth 3 - Rough SKETCH SYMBOLS Joint Healed Joint Broken Part of Core Not Recovered Clay Sand Empty Space					JOINT SURFACE
MRO*XU52 MRO*XU52 JOINT CONDITION 1 - Slick 2 - Smooth 3 - Rough SKETCH SYMBOLS Joint Healed Joint Broken Part of Core Not Recovered Cavities or Vugs in Core Clay Sand Empty Space				- - - - - - - - - - - - -	
MRO°XU 5 2 JOINT CONDITION 1- Slick 2- Smooth 3- Rough SKETCH SYMBOLS Joint Healed Joint Broken Part of Core Not Recovered Clay Sand Empty Space			-	division	5 - Straight
2 - Smooth 3 - Rough SKETCH SYMBOLS Joint Healed Joint Broken Part of Core Not Recovered Clay Clay Sand Empty Space				1007/152	
3 - Rough SKETCH SYMBOLS Joint Healed Joint Broken Part of Core Not Recovered Clay Sand Empty Space				/ No. 2 - 188	
SKETCH SYMBOLS Joint Healed Joint Broken Part of Core Not Recovered Clay Clay Sand Empty Space]]			1 1	
SAS XFIZ Grave Healed Joint Broken Part of Core Not Recovered Cavities or Vugs in Core Clay Sand Empty Space Empty Space Empty Space Sand Empty Space Clay				DX 101	SKETCH SYMBOLS
Part of Core Not Recovered Cavities or Vugs in Core Clay Sand Empty Space		TAS VET 7		gynul.	
Part of Core Not Recovered Cavities or Vugs in Core Clay Sand Empty Space					Broken
Clay Sand Empty Space	the .				
Clay Sand Empty Space			V		
Empty Space	_		/		
					Sand
	воттом	воттом	воттом	воттом	Empty Space

								BORING NO. M-8				
								SHEET	5	OF	5	
PROJECT			340 FAE FILE NO. 12319						9			
LOCATIO	ON		В	ROOKL	YN, N	EW YORK		SURFA	CE ELEV.	-	+42.5	
BORING	LOCATION	\	SEE BORING LOCATION PLAN DATUM									
									·			
BORING	EQUIPMEI	NT AND M	ETHO	DS OF S	TABILI	ZING BOREH	<u>OLE</u>					
		TYPE	OF F	EED								
TYPE OF E	BORING RIG	DUR	ING C	ORING		CASING L	ISED		YES	NO		
TRUCK		MEC	HANIC	AL		DIA., IN.	4	DEPTH,	FT. FROM	0	TO 55	
SKID		HYD	RAULI	С	Χ	DIA., IN.	3	DEPTH,	FT. FROM	0	TO 124	
BARGE		ОТН	ER			DIA., IN.		DEPTH,	FT. FROM		то	
OTHER	CM3 LC	555						_		-		
TYPE AN	ID SIZE OF	:				DRILLING	MUD USED		YES	NO		
D-SAMPLE		D. SPLIT SI	POON				R OF ROTARY BIT			2-7/8, 3-	-7/8	
U-SAMPLE							DRILLING MUD	,		BENTONITE		
S-SAMPLE												
CORE BAF						AUGER U	SED		YES	X NO		
CORE BIT	-	ıı					DIAMETER, IN.					
DRILL ROI						1112744	<i>5 5 11 ((V)</i> = 1 = 1 × 1, 11 × 1.					
2111221101						*CASING	HAMMER, LBS.	140	AVFRAG	E FALL, IN.	30	
							R HAMMER, LBS.			E FALL, IN.	30	
							TOMATIC HAMMI			LIALL, IIV.		
WATERI	LEVEL OBS	SERVATIO	NIS IN	BOREH	OI F	OOLD AC	TOWATIO HAWWI	LIV.				
WAILKE	LVLLODO	DEPTH		DEPTH		DEPTH TO						
DATE	TIME	HOLE	-	CASII		WATER		CONDIT	IONS OF OF	BSERVATION		
			<u>='</u>				NO			RVATIONS MA	ADE.	
							110					
PIFZOME	ETER INST	ALLED		YES	Х	NO SKI	ETCH SHOWN (ON				
		<u> </u>] - = -		,,,,						
STANDPIP	PF:	TYPE				ID, IN.	IFN	GTH, FT.		TOP ELEV.		
INTAKE EL		TYPE				OD, IN.		GTH, FT.	-	TIP ELEV.	-	
FILTER:		MATERIAL				OD, IN.		GTH, FT.	-	BOT. ELEV	,	
TILILIX.		W// CI EI CI// CE						O111,1 1.			•	
PAY QUA	NITITIES											
	RY SAMPLE	BODING		LIN. FT.		118	NO. OF 3" SHEL	RV TI IRE	SAMDI ES			
	J-SAMPLE B			LIN. FT.		110	NO. OF 3" UNDI					
						40		STURBEL	SAIVIPLES	-		
CORE DRI	ILLING IN RO	JCK		LIN. FT.		16	OTHER:			-		
DODINO	CONTRAC	TOD				401115		TEOTINI	200 1110			
	CONTRAC	TUK		100450		AQUIFE	R DRILLING &	IE21IN(o CO., INC.			
DRILLER				JAMES		NDELIO: E 05.1	HELPERS	0140: 55	TION!	DANNY		
REMARK	-						OUTED UPON C	OMPLE			7.00.45	
	NT ENGINE	-		2::-		ATTHEW KRAN		214	DATE	-	7-06-15	
	ICATION C	HECK:		CHE	KYL J.	MOSS	_TYPING CHE	∪K:		KANDRA PA		
MRCE Form B	S-1								BC	RING NO.	M-8	

2	SHEET 1 OF		
12319	FILE NO.	340 FAE	PROJECT:
+42.5	SURFACE ELEV.	BROOKLYN, NEW YORK	LOCATION:
AATTHEW KRAMER	RES ENGR MA		

DAILY		SAME	DI E		CASING			
	NO			CAMPLE DESCRIPTION	OTDATA	DEDT		
PROGRESS	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	SIRAIA **		BLOWS	
08:45						0.7		**Concrete from 0' to
06-15-15	1D	1.0	3-3	Brown fine to medium sand, trace silt (Fill) (SP)			AHEAD	0.7'.
Monday		3.0	4-6				4"	
Overcast	2D	3.0	4-7	Brown fine to medium sand, trace coarse sand,				
60°F		5.0	6-7	silt (Fill) (SP)	F	5	₩	
	3D	5.0	5-5	Brown fine to medium sand, trace coarse sand,				
		7.0	5-5	gravel, brick, concrete, silt (Fill) (SP)				
	4D	7.0	4-9	Brown fine to medium sand, trace gravel,				Concrete in spoon.
10:00		8.3	50/3"	concrete, coarse sand, silt (Fill) (SP)		8.3		Boring offset.
		0.0	33,3			10		End of Boring at 8.3'.
						45		
						15		
						20		
						25		
								†
						30		
						35		
						40		
	<u> </u>							
	<u> </u>							
	-					AF		
						45		
	<u> </u>							
						L		
						50		
	1		i .		1	1	1	1

M-9

								BORING	NO.	M	1-9
								SHEET	2	OF	2
PROJEC [®]	т				840 FA			FILE NO.		1231	9
LOCATIO	ON		В	ROOKL	YN, NI	EW YORK		SURFAC	E ELEV.		+42.5
BORING	LOCATION	<u> </u>	SEE	BORIN	G LO	CATION PLA	N	DATUM		NAVD	88
BORING	<u>EQUIPMEI</u>				TABILI	ZING BOREH	<u>OLE</u>				
			OF FE						٦		
_	BORING RIG	_	ING CC			CASING L	_		YES	NO	
TRUCK			HANIC	-		DIA., IN.	4	_DEPTH, F1		0	TO 5
SKID		_	RAULIC		Х	DIA., IN.	-	_DEPTH, F1			_TO
BARGE		OTH	ER			DIA., IN.		_DEPTH, F1	Г. FROM		_TO
OTHER	CME LC	255									
T)/DE 414	ID 017E 0E	_				55			7		
	ID SIZE OF						MUD USED	- 18.1	YES	X NO	
D-SAMPLE		D. SPLIT SI	JOON				R OF ROTARY BIT	, IIV.			
U-SAMPLE						I YPE OF	DRILLING MUD				
S-SAMPLE	-					ALICEDII	CED		VEC	V NO	
CORE BAF		"				AUGER U			YES	X NO	
DRILL ROI						I I PE ANI	D DIAMETER, IN.				
DRILL ROL	DS <u>Z</u>					*CACING	HAMMER, LBS.	140	۸\/ED ۸ C	E FALL, IN.	30
							R HAMMER, LBS.	140	=	E FALL, IN. E FALL, IN.	30
							K HAWWER, LBS. JTOMATIC HAMMI		AVERAG	E FALL, IIV.	30
WATERI	EVEL OBS	SERVATIO	NI 2N	BOREH	OLF.	OSLD AC	TOWATIC HAWWI	_1\.			
VV/VILIVE	LVLLODO	DEPTH		DEPTH		DEPTH TO					
DATE	TIME	HOLE		CASI		WATER		CONDITIO	NS OF OE	SERVATION	
							NO	WATER LE\	/EL OBSE	RVATIONS MA	ADE.
PIEZOME	ETER INST	ALLED		YES	Χ	NO SKI	ETCH SHOWN (ON			
STANDPIP		TYPE				ID, IN.		GTH, FT.		TOP ELEV.	
INTAKE EL	LEMENT:	TYPE				OD, IN.		GTH, FT.		TIP ELEV.	
FILTER:		MATERIAL				OD, IN.	LEN	GTH, FT.		BOT. ELEV	'
DAY 01	NITIT'S										
PAY QUA											
	RY SAMPLE			LIN. FT.		8.3	NO. OF 3" SHEL				
	I-SAMPLE B			LIN. FT.			NO. OF 3" UNDI	STURBED S	SAMPLES		
CORE DRI	LLING IN RO	OCK		LIN. FT.			OTHER:				
DODINO		TOD				4011151		TEOTINO	00 1110		
	CONTRAC	TOR		148450		AQUIFI	ER DRILLING &	IESTING (CO., INC.		
DRILLER	-			JAMES		NELIO! E 5 4 6:	HELPERS	001401 ==	ION	DANNY	
REMARK							(FILLED UPON	COMPLET			0.45.45
	NT ENGINE	-		CLIE		TTHEW KRAI			DATE	-	6-15-15 TDONE
	ICATION C	HECK:		CHE	₹ĭLJ.	MOSS	_TYPING CHEC	∠n: 		(ANDRA PA	
MRCE Form B	S-1								RC	RING NO.	M-9

5	SHEET 1 OF		
12319	FILE NO.	340 FAE	PROJECT:
+42.5	SURFACE ELEV.	BROOKLYN, NEW YORK	LOCATION:
MATTHEW KDAMED	DEC ENCD		

M-9A

BORING NO.

DAILY		SAMP	LE				CASING	
PROGRESS I	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA	DEPTH	BLOWS	
10:00	_						DRILLED	
06-15-15							AHEAD	
Monday							4" 3"	
Overcast								
70°F						5		
_								1
						10		
						15		
	1D	15.0	8-14	Brown fine to medium sand, some silt, trace				
		17.0	13-13	gravel (SM)				
						20		
	2D	20.0	10-14	Brown fine to medium sand, some silt, trace]
		22.0	13-9	gravel, coarse sand (SM)				
						25		
3	3NR	25.0	100/5"	No recovery]
		27.0						
	4D	27.0	37-51	Red, brown fine to medium sand, some silt,				
		29.0	50-51	trace gravel, coarse sand (SM)				
					Т	30		
	5D	30.0	23-33	Brown fine to coarse sand, some silt, trace				
		32.0	32-26	gravel (SM)				
						35		
	6D	35.0		Brown fine to medium sand, some silt, trace				
		37.0	18-24	gravel, coarse sand (SM)				
						40		
	7D	40.0	24-25	Red brown fine to coarse sand, some gravel,				
		42.0	21-25	silt (SM)				
						43.5		
						45	+	
<u>-</u>	8D	45.0	18-17	Red brown fine to medium sand, trace silt,				No recovery on 2" spoon,
14:45		47.0	16-18	gravel (SP-SM)			\perp	take 3" spoon.
07:30					S			
06-16-15						F.		
Tuesday	0.0	50.0	40.40	Dad bassa fire to an adicional beautiful		50		\\/_t = = = = -
l —	9D	50.0	10-10	Red brown fine to medium sand, trace silt,			+	Wet sample.
70°F		52.0	13-15	coarse sand (SP-SM)			†	

MRCE Form BL-1

BORING NO. M-9A

		SHEET 2 OF	5
PROJECT:	340 FAE	FILE NO.	12319
LOCATION:	BROOKLYN, NEW YORK	SURFACE ELEV.	+42.5
		RES. ENGR.	MATTHEW KRAMER

DAILY SAMPLE CASING	
PROGRESS NO. DEPTH BLOWS/6" SAMPLE DESCRIPTION STRATA DEPTH BLOWS	REMARKS
Cont'd DRILLE	
	-
06-16-15 AHEAD	
Wednesday 3"	
Overcast	
70°F 55	
10D 55.0 12-13 Brown fine to medium sand, trace coarse sand,	
57.0 17-18 silt (SP-SM)	1
Jin (Cr. Gwi)	4
60	
11D 60.0 18-17 Brown fine to medium sand, trace coarse sand,	
62.0 20-20 silt (SP-SM)	
	-
65	1
12D 65.0 21-22 Brown fine to medium sand, trace silt (SP-SM)	
67.0 25-25	
70	
	4
13D 70.0 21-22 Do 12D (SP-SM)	
72.0 25-28	
75	1
	-
14D 75.0 17-22 Brown fine to medium sand, trace coarse	
77.0 24-24 sand, silt (SP-SM)	
80	
15D 80.0 23-28 Brown fine to medium sand, trace silt (SP-SM)	
	4
82.0 33-34	
85	
16D 85.0 27-29 Do 15D (SP-SM)	
87.0 30-33	
	1
	4
	1
90	
17D 90.0 28-30 Do 15D (SP-SM)	
92.0 30-32	
	1
	1
05	-
95	4
18D 95.0 22-30 Brown fine sand, trace silt, mica (SP-SM)	1
97.0 34-35	
100	1
19D 100.0 25-31 Do 8D (SP-SM)	4
102.0 33-36	

BORING NO. M-9A

M-9A

5	SHEET 3 OF		
12319	FILE NO.	340 FAE	PROJECT:
+42.5	SURFACE ELEV.	BROOKLYN, NEW YORK	LOCATION:
MATTHEW KDAMED	DEC ENCD		

						RES.	ENGR.	MATTHEW KRAMER
DAILY		SAMF	PLE				CASING	
PROGRESS	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA	DEPTH	BLOWS	REMARKS
							DRILLED	
14:30					S		AHEAD	
07:00						103	√ 3"	
06-17-15	1C	103.0	REC-66%	Gray gravel & cobbles			4*	*Coring time in
	10	106.0	RQD=13%	Gray graver & cobbles	Т	105	6*	minutes per foot.
Wednesday		106.0	KQD=13%		•	106	6*	minutes per 100t.
Sunny	00	400.0	DEO 4000/	Mark and a state of the skilled and a skille		100		
70°F	2C			Medium hard unweathered to slightly weathered			8*	
		111.0		gray gneiss, moderately jointed to jointed, iron			4*	
				stained & weathered joints			4*	
						110	4*	
							4*	
	3C	111.0	REC=43%	Weathered highly weathered gray gneiss,			8*	Black decomposed
		113.5		broken, iron stained & weathered joints	R		8/6"*	rock in between rock
	4C	113.5		Hard unweathered to slightly weathered gray			5*	fragments.
		118.5		gneiss, blocky, iron stained & weathered joints		115	4*	magmente.
		110.5	NQD=01 /6	grielss, blocky, from stained & weathered joints		113	4*	
							4*	
14:00							3*	
14.00						118.5		End of Boring at 118.5'.
						120		
						125		
						123		
						130		
						135		
						100		
						140		
						145		
						450		
						150		
							<u></u>	

BORING NO. M-9A

M-9A

M	lueser Rutl	edge Consulting E 25 West 34th Street	ngineers		ROCK CORE SKETCH
N CERT	ew York, NY 10	122		BORING NO.	M-9A
	917 339-9300 www.mrce.com	F: 917 339-9400		SHEET	4 of 5
PROJECT:	340 F	FAE		FILE NO.	12319
LOCATION		.+42.5			
	. EQUIPMENT			RES ENGR.	Hatthew Kramer
	S/STANDARDS				
Run No.	REC/RQD	Run No. REC/RQD	Run No. REC/RQD	Run No. REC/RQD	
		40 93/87	2C 100/80	1 C 66,6/13.7	
-		101701	20 7.0	3C 43.3/227	
	TOP	ТОР	BOT. TOP	ТОР	
	-		-	MJ60'XFS -	ROCK CORE SKETCH <u>LEGEND</u>
	-			520°/185	JOINTING
	4			730°//FI	J - Joint
	1			17/10V1	MB - Mechanical Break
	}	ив :	JIOXFS =	groul + -	₽ - Angle w/ Horizontal
	\dashv		JOINAP -	200,XET -	// - Parallel
	7	Tayes		J J 60 X F I	X - Crossing
	1	Jo'XFS			F - Foliation
	M -		JO'XFS -	J60×FI	
	<u> </u>		Wit -		5 - Stratification
	7	-	-	730//FS	U - Unfoliated or Unstratified
	ユ	JZOXF S .	_	1CA 3CV -	JOINT SURFACE
		JOXFI :		- 0	
	-	1 nover	-	JOO'XFI - SO SE	I - Irregular
	7	7	-	JIONFI	5 - Straight
	-			SCALE	JOINT CONDITION 1 - Slick
	<u> </u>		1 1		2 - Smooth
	1	1			3 - Rough
	1	JIOXFI =	560/100		SKETCH SYMBOLS
	-		JOS/FC - UBOS/FS - JOSXFSWIT-		Joint
			NRO 1/2	V -	Healed Joint
		1	TracyFSwit	111 1	Broken
	7		I go w o j —		Part of Core Not Recovered
	‡		NOWEC -		
		50000	T WALL		Cavities or Vugs in Core
	4	526° 11FS	MB6*// FI		Clay
	-			×	Sand
<u> </u>	воттом	воттом	TOP -BOTTOM	вотгом	Empty Space

							BORING NO. M-9A				
							SHEET	5	OF	5	
PROJECT				340 FA			FILE NO		12319		
LOCATIO)N		BROOKL	YN, N	EW YORK		SURFAC	E ELEV.	+4	12.5	
BORING	LOCATIO	N .	SEE BORIN	IG LO	CATION PLAI	V	DATUM		NAVD 88	3	
							_				
BORING	<u>EQUIPME</u>	NT AND ME	THODS OF S	STABILI	ZING BOREH	<u>OLE</u>					
		TYPE (OF FEED								
TYPE OF E	BORING RIG	B DURIN	G CORING		CASING L	JSED	X	YES	NO		
TRUCK		MECH.	ANICAL		DIA., IN.	4	DEPTH, F	T. FROM	0T	O 45	
SKID		HYDR	AULIC	X	DIA., IN.	3	_DEPTH, F	T. FROM	0T	0 103	
BARGE		OTHER	₹		DIA., IN.		_DEPTH, F	T. FROM	T	o	
OTHER	CME LC	C55									
								7			
TYPE AN	D SIZE OF	:				MUD USED		YES	NO		
D-SAMPLE	R 2" O.	D. SPLIT SPC	OON		DIAMETE	R OF ROTARY BIT	Γ, IN.		2-7/8, 3-7/		
U-SAMPLE	R				TYPE OF	DRILLING MUD			BENTONITE (3EL	
S-SAMPLE	-							7			
CORE BAR					AUGER U			YES	X NO		
CORE BIT					TYPE AND	DIAMETER, IN.					
DRILL ROD	OS <u>2"</u>										
						HAMMER, LBS.	140		E FALL, IN.	30	
						R HAMMER, LBS.	-	_AVERAGI	E FALL, IN.	30	
\4/4 T ED	E)/EL OB/	DED\/ATION	0 111 00051		*USED AL	JTOMATIC HAMMI	ER.				
WATERL	EVEL OBS	SERVATION									
DATE	TIME	DEPTH O HOLE	F DEPT CAS		DEPTH TO WATER		CONDITIO		SEDVATION		
06-16-15	07:30	40	40 40		23	CONDITIONS OF OBSERVATION					
06-10-15	07:00	103	10		14						
00-17-13	07.00	100	10	5	17						
						1					
PIEZOME	TER INST	ALLED	YES	X	NO SKE	ETCH SHOWN (NC				
			<u></u>								
STANDPIP	E:	TYPE			ID, IN.	LEN	GTH, FT.		TOP ELEV.		
INTAKE EL	EMENT:	TYPE			OD, IN.	LEN	GTH, FT.		TIP ELEV.		
FILTER:		MATERIAL			OD, IN.	LEN	GTH, FT.		BOT. ELEV.		
PAY QUA	NTITIES										
3.5" DIA. D	RY SAMPLE	BORING	LIN. FT.	<u></u>	103	NO. OF 3" SHEL	BY TUBE S	AMPLES			
3.5" DIA. U	-SAMPLE B	ORING	LIN. FT.	<u></u>		NO. OF 3" UNDI	STURBED S	SAMPLES			
CORE DRI	LLING IN RO	OCK	LIN. FT.		15.5	OTHER:					
BORING	CONTRAC	TOR			AQUIFE	ER DRILLING &	TESTING	CO., INC.			
DRILLER			JAMES	3		_HELPERS			DANNY		
REMARK	S			ВС	REHOLE GRO	OUTED UPON C	OMPLETI	ON.			
	IT ENGINE				TTHEW KRAN			DATE		15-15	
CLASSIF	ICATION C	CHECK:	CHE	RYL J.	MOSS	TYPING CHEC	CK:		ANDRA PATE		
MRCE Form B	S-1							ВО	RING NO.	M-9A	

PROJECT: 340 FLATBUSH AVENUE EXTENSION FILE NO. 12319
LOCATION: BROOKLYN, NEW YORK SURFACE ELEV. +13.0
RES. ENGR. ANDY ONG

						RES	. ENGR.	ANDY ONG
DAILY		SAMF	PLE				CASING	
PROGRESS	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA	DEPTH		
09:45	110.	DEI 1111	BEOW0/0	Oram EE BEGOTAII TIGIT	0110/11/1	DE: 11		Concrete from 0' to 3.5'.
								Concrete nom o to 3.5.
03-31-16					CONC		AHEAD	
Thursday							4"	
						3.5		
15:00	1D	4.0	1-8	Brown fine to medium sand, trace gravel, silt,		5		1
07:00		6.0	10-15	coarse sand (SP-SM)	_			1
					F		+	-
04-01-16	2D	6.0	18-32	Brown fine to coarse sand, trace silt (SP-SM)			,	
Friday		8.0	40-52			8		
	3D	8.0	20-31	Brown fine to coarse sand, trace gravel, silt				Rig chatter from 9' to
		10.0	40-53	(SP-SM)		10		10'.
	4D	10.0	51-45	Brown fine to coarse sandy gravel, trace silt				2 Samples.
	70	11.15	50/2"					
		11.15	50/2	(GP-GM)				Rig chatter from 11' to
								13'.
								Rig chatter from 14' to
						15		to 15'.
	5D	15.0	34-35	Do 4D (GP-GM)				
	JU			DO TO (OI -OIVI)	_			Die shausster (27)
		17.0	35-24		T			Rig chatter from 17' to
								to 19'.
						20		1
	eD.	20.0	42.27	Drown fine to see read and trees ground silt				
	6D	20.0	43-27	Brown fine to coarse sand, trace gravel, silt				
		22.0	23-30	(SP-SM)				
	7D	23.0	21-18	Do 6D (SP-SM)				REC=4"
13:00		25.0	21-30	20 02 (0. 0)		25		End of Boring at 25'.
13:00		25.0	21-30			23		End of Boning at 25.
								1
						30		1
						30		
								1
						35		1
						33		
]
								†
						40		1
						40		
]
]
								†
						AF		
						45		
]
								1
								†
						EA		
						50		1
				<u>I</u>		L	1	

M-1

							BORING N	١٥.	M-1	
							SHEET	2	OF _	2
PROJEC ¹	Τ	340 F	LATBUSH /	AVENI	JE EXTENS	ION	FILE NO.		12319	
LOCATIO	N		BROOKLY	N, NE	W YORK		SURFACE	ELEV.	+1	3.0
BORING	LOCATION	ı SI	E BORING	LOC	ATION PLAN	J	DATUM		NAVD-88	
BORING I	<u>EQUIPMEN</u>	<u>IT AND METH</u>	ODS OF ST	<u>ABILIZ</u>	<u>ING BOREHO</u>	<u>LE</u>				
		TYPE OF	FFEED							
TYPE OF E	BORING RIG	B DURING	CORING		CASING L	ISED	Х	YES	NO	
TRUCK	-	MECHAN	NICAL		DIA., IN.	4	_DEPTH, FT	. FROM	0 TC	6.5
SKID	X	HYDRAL	JLIC	Χ	DIA., IN.		_DEPTH, FT	. FROM	TC	
BARGE		OTHER			DIA., IN.		DEPTH, FT	. FROM	TC)
OTHER										
TYPE AN	D SIZE OF	:			DRILLING	MUD USED	Х	YES	NO	
D-SAMPLE	ER 2" O.	D. SPLIT SPOO	N		DIAMETE	R OF ROTARY BI	T, IN.		3-3/4	
U-SAMPLE	R				TYPE OF	DRILLING MUD	•		QUIK GEL	
S-SAMPLE	R						•			
CORE BAR	RREL				AUGER U	SED		YES	X NO	
CORE BIT	-				TYPE AND	DIAMETER, IN.				
DRILL ROI						,				
	-				CASING F	IAMMER, LBS.		AVERAGE	E FALL, IN.	
						R HAMMER, LBS.			FALL, IN.	30
						THEAD WITH DO				
WATERI	EVEL OBS	SERVATIONS	IN BOREHO	IF	0022 0.					
******		DEPTH OF	DEPTH		DEPTH TO					
DATE	TIME	HOLE	CASIN		WATER		CONDITIO	NS OF OB	SERVATION	
						NO	WATER LEV	EL OBSEF	RVATIONS MAD	E.
		ļ								
PIFZOME	TER INST	ALLED	YES	X	NO SKE	TCH SHOWN O	NC			
STANDPIP	oF.	TYPE			ID, IN.	LEN	GTH, FT.		TOP ELEV.	
INTAKE EL		TYPE			OD, IN.	-	GTH, FT.		TIP ELEV.	
FILTER:	_LIVILINI.	MATERIAL			OD, IN.		GTH, FT.		BOT. ELEV.	
FILILI.		WATERIAL			OD, IIV.	LLIN	G111, F1.		_BOT. LLLV.	-
PAY QUA	NTITIES									
	RY SAMPLE	E DODING	LIN. FT.		25	NO. OF 3" SHEL	DV TUDE C	MDI EC		
	J-SAMPLE B		LIN. FT.	-						
	_	-				NO. OF 3" UNDI	210KBED 2	AMPLES	-	
CORE DRI	LLING IN RO	JUK	LIN. FT.			OTHER:				
DOD!!!	00NTD 4 6	TOD				- D D D II + II + O -	TEOT:::0 0			
	CONTRAC		44TT 51105		AQUIFE	R DRILLING &			(000TT 05::	0/50
DRILLER			MATT FUCE			HELPERS			/SCOTT ODW	YEK
REMARK			BOREH	OLE TE		AT 25' DUE TO E				
	IT ENGINE	-			ANDY ONG			DATE	03-3	1-16
CLASSIFI	ICATION C	HECK:	CHER	YL J. N	/IOSS	TYPING CHEC	CK:			
MRCE Form B	S-1							BOI	RING NO.	M-1

PROJECT: 340 FLATBUSH AVENUE EXTENSION FILE NO. 12319
LOCATION: BROOKLYN, NEW YORK SURFACE ELEV. +13.0
RES. ENGR. ANDY ONG

DAILY	SAMPLE		PLE				CASING	
PROGRESS	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA	DEPTH	BLOWS	REMARKS
09:30					**	0.5		**Concrete slab from 0'
03-11-16	1D	1.0	5-4	Brown gravelly fine to coarse sand, trace silt				to 0.5'. REC=6"
Friday		3.0	6-5	(SP-SM)	F			Possible cobble from
	2D	3.0	47-36	Brown fine to coarse sand, some gravel, silt				3' to 4'.
		5.0	28-11	(SM)		5		Boulder & cobble at
	3D	5.0	42-50/0"	Brown fine to coarse sand, some gravel, silt	*** BLDR	5.5		5.5'.
		5.5		(SM)	DLDI	6.5		Hard drilling & coring
	4D	7.0	10-35	Red brown fine to medium sand, some silt,				from 5.5' to 6.5'.
		9.0	41-47	trace gravel, coarse sand (SM)				Hard drilling at 11'
						10		and from 13' to 14'.
	5D	10.0	31-50	Brown fine to medium sand, some silt, trace			+	
15:00		11.15	50/3"	gravel, coarse sand (SM)				
08:00					T			
03-14-16								
Monday						15		
	6D	15.0	10-10	Brown fine to medium sand, some clayey silt,				
		16.3	10-100/4"	fine to coarse gravel, trace coarse sand (SM)				Hard drilling from 16.5'
								to 18.5'.
						18.5		
						20		
	7D	20.0	15-17	Brown fine to coarse sand, trace silt, gravel				
		22.0	D & GROUTE	(SP-SM)				
								Rig chatter from 23' to
								25'.
						25		
	8D	25.0	41-18	Brown fine to coarse sand, some gravel, trace				Hard drilling & rig
13:00		27.0	22-20	silt (SP-SM)				chatter from 27' to 30'.
07:00								
03-15-16								
Tuesday	0.0	00.0	40.40			30		
	9D	30.0	12-13	Brown fine to coarse sand, trace gravel, silt				
		32.0	16-19	(SP-SM)				
						35		
	10D	35.0	10.14	Brown fine to engree and trace silt (CD CM)	s	35		
	טטו	37.0	10-14 18-22	Brown fine to coarse sand, trace silt (SP-SM)				
		37.0	10-22					
						40		
	11D	40.0	12-16	Brown fine to medium sand, trace coarse sand,		+0		
	110	42.0	20-22	silt (SP-SM)				
		72.0	20 22					
						45		
	12D	45.0	19-22	Do 11D (SP-SM)				
		47.0	21-23					
			: :					
			1					
14:30			1			50		
07:00	13D	50.0	19-26	Do 11D (SP-SM)				
03-16-16		52.0	28-30		1			

BORING NO. M-3

M-3

PROJECT: 340 FLATBUSH AVENUE EXTENSION FILE NO. 12319
LOCATION: BROOKLYN, NEW YORK SURFACE ELEV. +13.0
RES. ENGR. ANDY ONG

DAILY	SAMPLE						CASING	ANDIONO
PROGRESS	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA	DEPTH		REMARKS
Cont'd	110.	<i>D</i> 21 111	220110/0	0/1111		<i>D</i> 2	BLOWE	112
03-16-16								
Wednesday								
						55		
	14D	55.0	24-30	Brown fine to medium sand, trace coarse				
	1.15	57.0	50-60	sand, silt (SP-SM)				
		01.0						
						60		
	15D	60.0	25-36	Do 14D (SP-SM)				
	.05	62.0	68-72	20 1 12 (Ci Ciii)				
		02.0	00.12					
						65		
	16D	65.0	24-33	Do 14D (SP-SM)				
		67.0	57-65	((,	s			
		0	0.00		3			
						70		
15:00	17D	70.0	71-100/4"	Do 14D (SP-SM)				REC=6"
07:00		70.8	7 1 100/ 1	20 1.12 (0.1 0.1.1.)				1120-0
03-17-16								
Thursday								
marcaay						75		Rig chatter at 75'.
	18D	75.0	43-56	Do 14D (SP-SM)				rtig onation at 70.
	100	76.1	50/2"	20 112 (01 0141)				
		70.1	30/2					
						80		
	19D	80.0	65-50/1"	Do 14D (SP-SM)				REC=6"
	130	80.6	00-00/1	01 -3W)				1120-0
		00.0						
						83.5		Gray clay on roller bit
						85		at 85'.
	20D	85.0	35-39	Stiff gray black organic silty clay (OH)		- 00		WC=30, pp=2.25
	200	87.0	51-60	*				*Slight odor
		07.0	0100		С			Siigin odoi
						<u> </u>		
						90		Rig chatter at 90'.
13:00	21NR	90.0	50/1"	No recovery		- 55	11*	*Coring time in
07:00		90.1	00/1			<u> </u>		minutes per foot.
03-18-16	1C	90.0	REC=53%	Gray boulder, cobbles & gravel			8*	
Friday		95.0	RQD=NA	,			5*	
aay					T	95	3*	
	2C	95.0	REC=81.7%	Top 2': Gray boulder & gravel			17*	
		100.0		Bot: Medium hard gray gneiss, unweathered to			13*	
		. 5010		slightly weathered, jointed, iron stained &			8*	
				weathered joints		97.8	8*	
						100	10*	
	3C	100.0	REC=98.3%	Hard unweathered gray gneiss, moderately	R		11*	
				jointed to blocky, weathered joints			11*	
L	ı		1	p		1		

BORING NO. M-3

M-3

PROJECT: 340 FLATBUSH AVENUE EXTENSION FILE NO. 12319
LOCATION: BROOKLYN, NEW YORK SURFACE ELEV. +13.0
RES. ENGR. ANDY ONG

							ENGR.	ANDTONG
DAILY		SAME	PLE				CASING	
PROGRESS	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA	DEPTH	BLOWS	REMARKS
Cont'd								
03-18-16							4.0*	
Friday					R		10*	
							10*	
15:30						105	10*	End of Boring at 105'.
								MC Meter Centent
								WC=Water Content
								in percent of dry
								weight.
						110		
								pp=Pocket
								Penetrometer
								Unconfined Compres-
								sive Strength in tsf.
						115		
						120		
						125		
						130		
						135		
						. 30		
							<u></u>	
						140		
						145		
						1.70		
						150		
						130		

M-3

Mueser Rutledge Consulting Engineers 14 Penn Plaza - 225 West 34th Street New York, NY 10122 T: 917 339-9300 F: 917 339-9400

www.mrce.com

340 F.A.E PROJECT:

LOCATION: BROOKLYL, LY

TEST/INSP. EQUIPMENT

DEC CODEC/CTANDADDE

ROCK CORE SKETCH

M-3 BORING NO. SHEET 4 FILE NO. 12319 OF 5 + 13 SURFACE ELEV. RES ENGR. A.OHG

REF. CODES/STANDARDS	-			
Run No. REC/RQD	Run No. REC/RQD	Run No. REC/RQD	Run No. REC/RQD	
	Rec - 98%	2C REC: 817%	REC 53%	
	3 C 88%	20 Rep = 70.1%	C 800 25%	
	TOP	95 TOP	90 тор	
TOP	100	15 10	10 108	ROCK CORE SKETCH
		1		<u>LEGEND</u>
		BOULDERS	V -	<u>JOINTING</u> J - Joint
	4	5		MB - Mechanical Break
	No. 1		l g	
	-MB	MB %	%	Ð - Angle w/ Horizontal
		MB C -	8 -	// - Parallel
	-MB	8	8	X - Crossing
		E COSSIES,	Sanzary ' Caesras	F - Foliation
	, -	/ 5%	- +	S - Stratification
	MB]	ين ال	, GRAVEL	U - Unfoliated or
	2	-2	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	Unstratified
	-		7 2 3	JOINT SURFACE C - Curved
		/\ 1	1 1	·
	_ N/FI2 _	<u></u>		5 Charlet
	1		- ا ا	•
	-	-		JOINT CONDITION 1 - Slick
	-MB 3-	3-	3-78	2 - Smooth
		7.0460	1 4 1	1
	-	J45XSZ]		3 - Rough SKETCH SYMBOLS
	1			Joint
	_AAP	3101/52		Healed Joint
/]	-MB			Broken
	30 XF	J30%/55	+	Part of Core Not
	Δ λ ₁ -		1 1	Part of Core Not Recovered
	3			Cavities or Vugs in Core
	-There -			Clay
	J45°KFS2		1 1	Sand
				5-2
BOTTOM	DS' BOTTOM	(80 BOTTOM	95° воттом	Empty Space

						BORING	NO.	M-3	
						SHEET	5	OF _	5
PROJECT	Γ <u> </u>			NUE EXTENS	ION	_FILE NO.		12319	
LOCATIO	N	E	BROOKLYN, N	NEW YORK		SURFAC	E ELEV.	3.0	
BORING I	LOCATION	I SEI	BORING LO	CATION PLAN	١	DATUM		NAVD-88	
BORING E	EQUIPMEN	<u>NT AND METHO</u>	DS OF STABIL	IZING BOREHO	<u>DLE</u>				
		TYPE OF F	FEED				7		
TYPE OF B	BORING RIG	DURING C	ORING	CASING (JSED	X	YES	NO	
TRUCK		MECHANIC	CAL	DIA., IN.	5	_DEPTH, F	T. FROM	0 TC	11
SKID	X	HYDRAUL	IC X	DIA., IN.		_DEPTH, F	T. FROM	TC	
BARGE		OTHER		DIA., IN.		_DEPTH, F	T. FROM	TC)
OTHER									
							7		
TYPE AND	D SIZE OF:	•		DRILLING	MUD USED	X	YES	NO	
D-SAMPLE	R 2" O.	D. SPLIT SPOON	<u> </u>	DIAMETE	R OF ROTARY BI	T, IN.		5-7/8, 3-3/4	
U-SAMPLE	:R			TYPE OF	DRILLING MUD			E-Z MUD	
S-SAMPLE	R						7		
CORE BAR	RREL NX D	OUBLE BARREL		AUGER U	ISED		YES	X NO	
CORE BIT	NX D	IAMOND		TYPE AN	D DIAMETER, IN.				
DRILL ROD	DS NWJ								
				*CASING	HAMMER, LBS.	300	_AVERAGE	FALL, IN.	
				*SAMPLE	R HAMMER, LBS	. 140	_AVERAGE	FALL, IN.	30
				*USED C/	ATHEAD WITH DO	NUT HAMM	IER.		
WATER L	EVEL OBS	SERVATIONS IN	BOREHOLE						
		DEPTH OF	DEPTH OF	DEPTH TO					
DATE	TIME	HOLE	CASING	WATER		CONDITIC	NS OF OB	SERVATION	
03-15-16	07:00	27	11	7			LEVEL RE		
03-16-16	07:00	50	11	9.2		MUD	LEVEL RE	ADING.	
03-17-16	07:00	71	11			COLLAF	PSED HOLE	E AT '-9.5'.	
03-18-16	07:00	90	11	7		MUD	LEVEL RE	ADING.	
03-21-16	07:00	105	11	9		MUD	LEVEL RE	ADING.	
			1	7					
PIEZOME	TER INSTA	ALLED	YES X	NO SKI	ETCH SHOWN (JN			
	_	7.05						TOD 51 51	
STANDPIP		TYPE		ID, IN.		GTH, FT.		TOP ELEV.	
INTAKE EL	EMENT:	TYPE		OD, IN.		GTH, FT.		_TIP ELEV.	
FILTER:		MATERIAL		OD, IN.	LEN	GTH, FT.		BOT. ELEV.	
	NITITICO								
PAY QUA		- DODING	LINI ET	00	NO OF SUCCES	DV TUDE 2	AAADI 50		
	RY SAMPLE		LIN. FT.	90	NO. OF 3" SHEI				
	-SAMPLE B		LIN. FT.		NO. OF 3" UND	ISTURBED S	SAMPLES		
CORE DRII	LLING IN RO	JCK	LIN. FT.	15	OTHER:				
DODING (TOD		40125		TEOTING	00 1110		
	CONTRAC		0110 01:5:	AQUIF	ER DRILLING &	TESTING (FT 001/11/55	
DRILLER			GUS SURI	. E DAOME =	HELPERS	UDON SS		TT ODWYER	
REMARKS		ED.	ROKEHO		D & GROUTED	UPON CON			4.40
	T ENGINE		011=51#	ANDY ONG	T/DIV/2 2::=	214	DATE	03-1	1-16
	CATION C	HECK:	CHERYL J	. MOSS	_TYPING CHE	JK:			14.0
MRCE Form BS	S-1						BOI	RING NO.	M-3

PROJECT: 340 FLATBUSH AVENUE EXTENSION FILE NO. 12319
LOCATION: BROOKLYN, NEW YORK SURFACE ELEV. +13.0
RES. ENGR. A. ONG

DAWN	SAMPLE		DIE				CASING	A. 0110
DAILY				CAMPLE DECORIDEION				
PROGRESS	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA	DEPTH	BLOWS	REMARKS
13:00					**	0.25		**Concrete from 0' to
03-28-16	1D	1.0	15-13	Top 1': Black f-c sand, tr silt, gravel (SM)			AHEAD	
Monday		2.7	15-50/2"	Bot: Brn f-m sand, sm gravel, silt, brick (SM)	F		4"	2 Samples at 1D.
	2D	3.0	10-17	Brown fine to medium sand, some gravel, silt	_			Rig chatter at 2.7'.
		5.0	13-14	(SM)		5	. ♦	REC=6"
								Driller dropped
15:00								equipment into
								borehole;
07:00								
03-29-16						40		borehole abandoned
Tues., 12:00						10		at 5 ft.
						15		
						20		
						20		
			KFILLED UP					
						25		
						30		
						35		
						35		
						40		
			1					
			1			45		
			1					
			1					
			1			-		
			1			50		
			-			30		
						<u> </u>		
					1			

BORING NO. M-10

M-10

						BORING NO.		M-10	
						SHEET	2	OF	2
PROJEC [*]			ATBUSH AVE		ION	_ FILE NO		12319	
LOCATIO			BROOKLYN, N			_SURFACE ELE	EV	+13.0)
BORING	LOCATION	N SE	E BORING LO	CATION PLAI	V	_DATUM		NAVD-88	
BORING	EQUIPMEN	NT AND METHO	DS OF STABILI	ZING BOREHO	DLE				
		TYPE OF							
TYPE OF E	BORING RIG	DURING C	CORING	CASING (JSED	X YES		NO	
TRUCK		MECHANI	CAL	DIA., IN.	4	DEPTH, FT. FRO	_	0 TO	4.5
SKID	X	HYDRAUL	IC X	DIA., IN.		DEPTH, FT. FRO	_	то	
BARGE		OTHER	-	DIA., IN.	-	DEPTH, FT. FRO	DM _	TO	
OTHER									
TYPE AN	D SIZE OF	:		DRILLING	MUD USED	X YES		NO	
			Drill er						
			drop						
D-SAMPLE	ER <u>2" O.</u>	D. SPLIT SPOOM	N ped	DIAMETE	R OF ROTARY B	IT, IN		3-3/4	
U-SAMPLE	-			_	DRILLING MUD			QUIK GEL	
S-SAMPLE			equipment				Г		
CORE BAR				AUGER U		YES		X NO	
CORE BIT	-		borehole;	TIPE AIN	D DIAMETER, IN.				
DIVILL IVO			borehole a	ıbando CASING I	HAMMER. LBS.	AVEI	RAGE F	ALL, IN.	
				*SAMPLE	R HAMMER, LBS	. 140 AVEI	RAGE F	ALL, IN. 3	0
			at 5 ft.	*USED CA	ATHEAD WITH DO	ONUT HAMMER.			
WATER L	EVEL OBS	SERVATIONS IN		1	I				
DATE	TINAT	DEPTH OF	DEPTH OF	DEPTH TO		CONDITIONS	- 000-	DVATION	
DATE	TIME	HOLE	CASING	WATER	NO	CONDITIONS OF WATER LEVEL O			
					NO	WATER LEVEL O	DOLKVA	ATIONS WADE.	
DIEZOME	TED INICT	ALLED .	\		TOU SHOWN	ON			
PIEZOIVIE	ETER INST	ALLED	YES X	NO SKI	ETCH SHOWN				
STANDPIP	PE:	TYPE		ID, IN.	LEN	IGTH, FT.	Т	OP ELEV.	
INTAKE EL	LEMENT:	TYPE		OD, IN.	LEN	IGTH, FT.	т	TP ELEV.	
FILTER:		MATERIAL		OD, IN.	LEN	IGTH, FT.	B	BOT. ELEV.	
				•				,	
PAY QUA									
	DRY SAMPLE		LIN. FT.	5		LBY TUBE SAMPL	_		
	J-SAMPLE B		LIN. FT.			ISTURBED SAMPI	LES _		
CORE DRI	ILLING IN RO	JUK	LIN. FT.		OTHER:		_		
BORING	CONTRAC	TOR		AQUIF	ER DRILLING &	TESTING CO., I	NC.		
DRILLER			ATT FUCETO		HELPERS		PAT CUMO		
REMARK	S		ВО	REHOLE BACK	_ KFILLED UPON	COMPLETION			
RESIDEN	IT ENGINE	ER		ANDY ONG		DAT	E _	03-28-	16

PROJECT: 340 FLATBUSH AVENUE EXTENSION FILE NO. 12319
LOCATION: BROOKLYN, NEW YORK SURFACE ELEV. +13.0
RES. ENGR. ANDY ONG

		0 4 8 4 5			1		CACING	ANDIONO
DAILY		SAMF					CASING	
PROGRESS	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA	DEPTH	BLOWS	REMARKS
13:15					**	0.25	DRILLED	**Concrete from 0' to
03-29-16							AHEAD	0.25'.
Tues., 15:00	1W	2.5		Gray fine to medium sand, trace silt (SP-SM)				Boulder at 2'.
07:00		3.0						Boulder cuttings.
03-30-16		0.0				5		Drilled ahead 5" at 3'.
Wed., 14:00								Rig chatter at 4'.
								Boring M-10A
								terminated at 3' due to
								large boulder.
						10		End of Boring at 3'.
						15		
						-13		
						20		
						25		
						30		
						35		
						33		
						40		
						45		
						F 2		
						50		

BORING NO. M-10A

M-10A

						BORING NO)_	M-10	Α
						SHEET	2	OF	2
PROJEC1	Γ			NUE EXTENS	ION	_FILE NO		12319	
LOCATIO			BROOKLYN, I			_SURFACE E	LEV.		3.0
BORING I	LOCATION	ISE	E BORING LO	CATION PLAN	N	_DATUM		NAVD-88	3
						_			
BORING I	<u>EQUIPMEN</u>	NT AND METHO	DS OF STABIL	IZING BOREHO	<u>DLE</u>				
		TYPE OF F	FEED				г		
_	BORING RIG			CASING L	JSED	X YE	L	NO	
TRUCK		MECHANIC		DIA., IN.	5	_DEPTH, FT. F	_	0 T	
SKID	X	HYDRAUL	IC X			_DEPTH, FT. F	-	T	
BARGE OTHER		OTHER		DIA., IN.		_DEPTH, FT. F	ROM _	T	<u> </u>
OTTIER									
TYPE ANI	D SIZE OF	:		DRILLING	MUD USED	X YE	ES [NO	
D-SAMPLE	ER <u>2" O.</u>	D. SPLIT SPOON	1	DIAMETE	R OF ROTARY BI	T, IN		3-3/4	
U-SAMPLE				TYPE OF	DRILLING MUD			QUIK GEL	
S-SAMPLE									
CORE BAR	RREL			AUGER U	_	YE	ES [X NO	
CORE BIT				TYPE ANI	D DIAMETER, IN.				
DRILL ROD				CASING	HAMMER, LBS.	۸۱	/ERAGE I	EALL IN	
					R HAMMER, LBS.		/ERAGE I	· · · · · · · · · · · · · · · · · · ·	30
					ATHEAD WITH DO				
WATER L	EVEL OBS	SERVATIONS IN	BOREHOLE	0025 07	***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	·•		
		DEPTH OF	DEPTH OF	DEPTH TO					
DATE	TIME	HOLE	CASING	WATER		CONDITIONS	OF OBSE	ERVATION	
					NO	WATER LEVEL	OBSERV	/ATIONS MAI	DE.
PIEZOME	TER INST	ALLED	YES X	NO SKE	ETCH SHOWN (ON			
STANDPIP	E:	TYPE		ID, IN.	LEN	GTH, FT.		TOP ELEV.	
INTAKE EL	EMENT:	TYPE		OD, IN.	LEN	GTH, FT.		TIP ELEV.	
FILTER:		MATERIAL		OD, IN.	LEN	GTH, FT.		BOT. ELEV.	
PAY QUA	NTITIES								
	RY SAMPLE	E BORING	LIN. FT.		NO. OF 3" SHEL	BY TUBE SAM	PLES		
	-SAMPLE B		LIN. FT.		NO. OF 3" UNDI		-		
	LLING IN RO		LIN. FT.		OTHER:		- -		
BORING (DRILLER	CONTRAC		ATT FUCETO	AQUIFI	ER DRILLING & HELPERS	TESTING CO		ΓODWYER	
REMARK		IVI		HOLE TEDMINI	_ HELPERS ATED DUE TO L	ARGE BOUL		ODWIEK	
	s T ENGINE	FR	DORE	ANDY ONG			ATE	U3-	29-16
	CATION C		CHERYL		TYPING CHEC			03-2	
MRCE Form BS			5.121(12)		_ : : : : : : : : : : : : : : : : : : :		BORI	ING NO.	M-10A

PROJECT: 340 FLATBUSH AVENUE EXTENSION FILE NO. 12319
LOCATION: BROOKLYN, NEW YORK SURFACE ELEV. +13.0
RES. ENGR. ANDY ONG

DAILY		SAME	DI F				CASING	
PROGRESS	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA	DEDTH	DI OME	REMARKS
14:00	INO.	DEFIN	BLOWS/6	SAMPLE DESCRIPTION	**	0.25	BLOWS	**Concrete from 0' to
03-30-16						0.23		0.25'.
Wed., 15:00								Boring M-108 terminated
wea., 15:00								at 3'.
						5		End of Boring at 3'.
						3		End of boiling at 3.
						10		-
						10		
						15		
						15		
						20		
						20		
						25		
						25		
						20		
						30		
						25		
						35		
						40		
						40		
						AE		
						45		
						FO		
						50		
							<u> </u>	

BORING NO. M-10B

M-10B

						BORING N		M-10	
						SHEET	2	OF _	2
PROJECT	Г	340 FL		VENUE EXTEN	SION	FILE NO.		12319	
LOCATIO	N		BROOKLY!	N, NEW YORK		SURFACE	ELEV.	+^	13.0
BORING	LOCATION	ISE	E BORING	LOCATION PLA	۸N	DATUM		NAVD-8	3
						_			
BORING I	<u>EQUIPMEN</u>			BILIZING BOREH	<u>OLE</u>				
		TYPE OF	FEED						
_	BORING RIG	DURING	CORING	CASING			YES	X NO	
TRUCK		MECHAN	ICAL	DIA., IN.		_DEPTH, FT.	FROM		0
SKID	X	HYDRAU	LIC	X DIA., IN.		_DEPTH, FT.	FROM	Т	0
BARGE		OTHER		DIA., IN.		_DEPTH, FT.	FROM	Т	0
OTHER									
	D SIZE OF				G MUD USED		YES	X NO	
D-SAMPLE	2" O.	D. SPLIT SPOO	N	DIAMET	ER OF ROTARY BI	T, IN.		3-3/4	
J-SAMPLE	-			TYPE OI	F DRILLING MUD	-			
S-SAMPLE	-								
CORE BAF	-			AUGER			YES	X NO	
CORE BIT				TYPE AN	ND DIAMETER, IN.	-			
DRILL ROI	DS								
					HAMMER, LBS.			FALL, IN.	
					ER HAMMER, LBS.			FALL, IN.	30
					CATHEAD WITH DO	DNUT HAMME	ER.		
WAIERL	EVEL OBS	ERVATIONS I							
DATE	TIME	DEPTH OF HOLE	DEPTH C			CONDITION		SERVATION	
DATE	TIIVIL	TIOLL	CASINO	WAILK	NO.			RVATIONS MAI)E
					110	VVAILI LL VI	LL ODOLIV	CVATIONS WA	JL.
PIFZOME	TER INST	ALLED	YES	X NO SK	ETCH SHOWN O	NC			
STANDPIP	E:	TYPE		ID, IN.	LEN	GTH, FT.		TOP ELEV.	
NTAKE EL		TYPE		OD, IN.		GTH, FT.		TIP ELEV.	
FILTER:		MATERIAL		OD, IN.		GTH, FT.		BOT. ELEV.	
PAY QUA	NTITIES								
	RY SAMPLE	BORING	LIN. FT.		NO. OF 3" SHEL	BY TUBE SA	MPI FS		
	I-SAMPLE B		LIN. FT.		NO. OF 3" UNDI				
	LLING IN RO		LIN. FT.		OTHER:	0.011222 0.			
			=		· · · · · · · · · · · · · · · · · · ·				
BORING	CONTRAC ¹	TOR		AOLUI	ER DRILLING &	TESTING O	O. INC		
DRILLER			MATT FUCET		HELPERS			/SCOTT ODV	VYFR
REMARK	-	11		OLE TERMINATE					
	O IT ENGINE	FR	DONLII	ANDY ONG			DATE		30-16
	ICATION C		CHERY	L J. MOSS	TYPING CHEC		-/ \		
MRCE Form B			Ç. ILIK I	_ ::			ROF	RING NO.	M-10B
VOF I OIIII D	U- 1						501		ועו ועו

PROJECT: 340 FLATBUSH AVENUE EXTENSION FILE NO LOCATION: BROOKLYN, NEW YORK SURFACE ELEV

BORING NO. M-11

SHEET 1 OF 5

FILE NO. 12319

SURFACE ELEV. 42.5

RES. ENGR. ANDY ONG

				1	1	RES.			ANDY ONG
DAILY		SAME	PLE				CAS	SING	
PROGRESS	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA	DEPTH	BLC	ws	REMARKS
08:30					**				**Concrete slab from
03-14-16	1D	1.0	4-5	Gray brown fine to coarse sand, some silt,		0.0			0' to 0.5'.
	יטו								0 10 0.5 .
Monday		3.0	13-26	trace gravel (SM)				! "	
	2D	3.0	5-5	Brown fine to coarse sand, some silt, gravel,					REC=7"
		5.0	2-2	trace clay pockets (SM)	F	5			
	3D	5.0	3-1	Brown fine to medium sand, some clay (SC)	F				REC=2"
		7.0	1-1						
	4D	7.0	WH-1	Brown clayey fine to medium sand (SC)					
		9.0	1-1	Brown diayey into to modium dana (ee)					•
		9.0	1-1			٠.			
						9.5			
	5NR	10.0	10-16	No recovery					REC=0", 2nd attempt
		12.0	15-17						made with 3" spoon,
									REC=0", no recovery.
									Cuttings; fine to medium
						15			sand, some silt.
	CD	45.0	0.0	Drawn alove, fine to madium and (CC)		13			Sand, Some Siit.
	6D	15.0	8-9	Brown clayey fine to medium sand (SC)					
		17.0	15-24						Hard drilling & water
									loss; possible boulder
									at 19'.
						20			
	7D	20.0	13-14	Brown fine to coarse sand, some silt, gravel					ł
	70								
		22.0	19-36	(SM)					
15:00						25	•	,	
07:00	8D	25.0	6-14	Brown fine to coarse sand, trace silt, gravel			,		
03-15-16		27.0	13-14	(SP-SM)					
		21.0	13-14	(OI -OIVI)					
Tuesday									
						30			
	9D	30.0	10-15	Do 8D (SP-SM)	S				
		32.0	16-19						
									Rig chatter from 33' to
									34'.
						0.5			34 .
						35			
	10D	35.0	26-21	Brown fine to coarse sand, some gravel, trace					
		37.0	19-28	silt (SP-SM)					
						40			1
	110	40.0	10.40	Drown fine to coord and trace all (CD CM)		70			
	11D	40.0	10-12	Brown fine to coarse sand, trace silt (SP-SM)					
		42.0	13-13						
						<u></u>	L		
						45			
	12D	45.0	13-13	Do 11D, trace gravel (SP-SM)					j l
	120			Do 11D, Hade graver (OI -OIVI)					1
		47.0	14-13						
						50			
	13D	50.0	11-14	Brown fine to medium sand, trace silt, gravel,					
		52.0	15-17	coarse sand (SP-SM)					
L		02.0		Joan Committee C	1		1		

BORING NO. M-11

PROJECT: 340 FLATBUSH AVENUE EXTENSION FILE NO. 12319
LOCATION: BROOKLYN, NEW YORK SURFACE ELEV. RES. ENGR. ANDY ONG

DAILY		SAMF	PLE				CASING	7.1.12.1 0.1.0
PROGRESS	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA			REMARKS
Cont'd								
03-15-16								
Tuesday								
						55		
	14D	55.0	11-16	Brown fine to medium sand, trace silt, coarse		- 33		
		57.0	18-19	sand (SP-SM)				
				,				
						60		
	15D	60.0	15-19	Do 14D (SP-SM)				
		62.0	24-22					
						65		
	16D	65.0	14-25	Brown fine to coarse sand, trace silt (SP-SM)				
		68.0	22-27					
						70		
	17D	70.0	15-19	Brown fine to medium sand, trace silt (SP-SM)		70		
	170	72.0	23-29	Brown line to medium sand, trace siit (SF-Sivi)				
		72.0	20 20					
						75		
	18D	75.0	16-23	Do 17D (SP-SM)	s			
		77.0	27-23					
						80		
	19D	80.0	25-32	Do 17D (SP-SM)				
		82.0	35-40					
	20D	05.0	00.40	Do 47D trace accuse and gravel (CD CM)		85		
	200	85.0 87.0	26-42 42-52	Do 17D, trace coarse sand, gravel (SP-SM)				
		07.0	12 02					
14:30						90		
07:00	21D	90.0	20-32	Do 17D (SP-SM)				
03-16-16		92.0	42-40					
Tuesday								
						95		
	22D	95.0	21-28	Brown fine to medium sand, trace silt, coarse				
		97.0	29-33	sand (SP-SM)				
						465		
	225	100.0	22.25	Do 22D (SB SM)		100		
	23D	100.0 102.0	23-25 26-24	Do 22D (SP-SM)				
		102.0	20-24					

BORING NO. M-11

M-11

PROJECT: 340 FLATBUSH AVENUE EXTENSION FILE NO. 12319
LOCATION: BROOKLYN, NEW YORK SURFACE ELEV. 42.5
RES. ENGR. ANDY ONG

						KE5	. ENGR.	ANDY ONG
DAILY		SAMI	PLE				CASING	
PROGRESS	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA	DEDTU		
	NO.	DEPIR	BLOW5/6	SAMPLE DESCRIPTION	SIKAIA	DEPIN	BLOWS	KEWAKKS
Cont'd								
03-16-16								
Tuesday					S			
						105		
	24D	105.0	23-30	Top: Brown fine to medium sand, some silt (SM)		106		1
	240					100		
		107.0	37-25	Bot: Hard gray black organic silty clay (OH)				24D Bot: WC=20,
					_			pp>4.5
					С			2 Samples taken.
						440		
						110		Rig chatter at 110'.
	25D	110.0	50/1"	No recovery	-		2*	REC=0"
	1C	110.0	REC=64%	Gray cobbles & gravel	Т	12	4*	*Coring time in
	-10			Gray cobbies a graver		12		
		112.0	RQD=NA				6*	minutes per foot.
	2C	112.0	REC=98%	Medium hard slightly weathered to unweathered			5*	
		117.0	RQD=50%	gray gneiss, jointed to broken, iron stained &		115	7*	
		117.0	1100-0070			- 110		1
				weathered joints			6*	
							7*	
	3C	117.0	REC=93%	Do 2C	R		6*	
	30							1
		122.0	RQD=86.7%				6*	
						120	7*	
			•				7*	1
						400		E 1 (B :
14:00						122	7*	End of Boring at 122'.
								WC=Water Content
						405		4
						125		in percent of dry
								weight.
								· ·
								.
								pp=Pocket
								Penetrometer
						130		Unconfined Compres-
						130		
								sive Strength in tsf.
	<u> </u>							
1								
						135		
1								1
1								1
1								
1								
1								1
	<u> </u>					440		1
1						140		
1								
1								†
	<u> </u>							
1								
1						145		†
						143		
1								1
1								1
1								
						150		1
								1

M-11

Mueser Rutledge Consulting Engineers 14 Penn Plaza - 225 West 34th Street **ROCK CORE SKETCH** New York, NY 10122 M-11 **BORING NO.** T: 917 339-9300 F: 917 339-9400 OF 5 www.mrce.com SHEET 340 F.A.E PROJECT: 12319 FILE NO. BROOKLYH, MY ~+42.5 LOCATION: **SURFACE ELEV. TEST/INSP. EQUIPMENT RES ENGR. REF. CODES/STANDARDS** REC/RQD REC/RQD REC/RQD REC/RQD Run No. Run No. Run No. Run No. REC: 93 EEC: 98 REC=64 10 RED=86.78 PRO 50 ROD = N/A TOP רון 112 TOP TOP ROCK CORE SKETCH **LEGEND** J45 1/FS2 **JOINTING** J - Joint MB - Mechanical Break J461/F32 D - Angle w/ Horizontal // - Parallel X - Crossing J20452 F - Foliation S - Stratification J20X552 U - Unfoliated or Unstratified JOINT SURFACE Szoxsc2 C - Curved I - Irregular S - Straight JOINT CONDITION SCALE: AxSI 2 1 - Slick 2 - Smooth 3 - Rough MR SKETCH SYMBOLS Joint **Healed Joint** MR Broken Part of Core Not Recovered 00 Cavities or Vugs in Core Clay AUS2 Sand **Empty Space** BOTTOM BOTTOM 122 BOTTOM воттом 117 NOTES ROCK @ ~ 112 94 TOP OF

BOR-3_JAN2013

							BORING I	NO.	M-11	
							SHEET	5	OF _	5
PROJECT		340 FL	ATBUSH A			N	FILE NO.		12319	
LOCATIO	N		BROOKLYN	N, NEW YO	RK		SURFACE	E ELEV.	42	2.5
BORING I	OCATION	SE	E BORING	LOCATION	PLAN		DATUM		NAVD-88	}
<u>Boring E</u>	<u>EQUIPMEN</u>	IT AND METH	ODS OF STA	BILIZING BC	REHOLE	_				
		TYPE OF	FEED					1		
TYPE OF B	BORING RIG	DURING	CORING	CA	SING USE	D	X	YES	NO	
TRUCK		MECHAN	ICAL	DIA	۸., IN	4	_DEPTH, FT	T. FROM	0TC	25
SKID		HYDRAU	LIC	X DIA	۸., IN		_DEPTH, FT	T. FROM	TC	·
BARGE		OTHER		DIA	۸., IN		_DEPTH, FT	T. FROM	TC	·
OTHER	CME-LC	55								
								1		
TYPE AND	O SIZE OF:			DR	ILLING MU	JD USED	X	YES	NO	
D-SAMPLE	R 2" O.	D. SPLIT SPOO	N	DIA	AMETER C	OF ROTARY BI	T, IN.		3-3/4	
U-SAMPLE	R			TY	PE OF DR	ILLING MUD			QUIK GEL	
S-SAMPLE	R							7		
CORE BAR	REL NX D	OUBLE BARREI	<u>-</u>	AU	GER USE	D		YES	X NO	
CORE BIT	NX D	AMOND		TY	PE AND D	IAMETER, IN.				
DRILL ROD	S NWJ									
						MER, LBS.		-	E FALL, IN.	
						IAMMER, LBS.		AVERAGE	E FALL, IN.	30
					SED AUTO	MATIC HAMM	IER.			
WATER L	EVEL OBS	ERVATIONS I		_						
DATE	TIME	DEPTH OF	DEPTH O				CONDITIO		CED\/ATION	
DATE	TIME	HOLE	CASING		_				SERVATION	
03-16-16	07:15	90	25	-20	.7		MOD	LEVEL RE	ADING.	
PIFZOME	TER INSTA	ALLED	YES	X NO	SKETO	CH SHOWN (NC			
				71	0.11					
STANDPIP	E:	TYPE		ID,	IN.	LEN	GTH, FT.		TOP ELEV.	
INTAKE EL		TYPE			, IN.		GTH, FT.		TIP ELEV.	-
FILTER:		MATERIAL			, IN.		GTH, FT.		BOT. ELEV.	-
							,			-
PAY QUA	NTITIES									
	RY SAMPLE	BORING	LIN. FT.	110	N	O. OF 3" SHEL	BY TUBE S	AMPLES		
	-SAMPLE B		LIN. FT.			O. OF 3" UNDI				
	LLING IN RO		LIN. FT.	12	_	THER:				
				<u></u>	_				-	
BORING	CONTRAC	TOR		Δ	QUIFFR	DRILLING &	TESTING (CO. INC		
DRILLER	5		OMENIC PER			IELPERS	0 0		GE RAYMONE)
REMARKS	<u> </u>					GROUTED I	UPON COM			-
	T ENGINE	FR	DOME	ANDY		. 33	J. J.1 JOIV	DATE		4-16
	CATION C	-	CHERY	L J. MOSS		YPING CHEC	CK:			•
MRCE Form BS			J. 121(1	2	·	3		BΩ	RING NO.	M-11

PROJECT: 340 FLATBUSH AVENUE EXTENSION FILE NO. 12319
LOCATION: BROOKLYN, NEW YORK SURFACE ELEV. +13.0
RES. ENGR. ANDY ONG

DAILY		SAMI	PLE				CASING	
PROGRESS	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION			BLOWS	REMARKS
07:00					**	0.5	DRILLED	**Concrete from 0' to
03-22-16	1D	1.0	4-6	Black brown fine to coarse sand, some gravel,			AHEAD	0.5'.
Tuesday		3.0	5-1	trace silt (SP-SM)			5" 4"	1D: REC=6"
	2D	3.0	4-9	Brown fine to coarse sand, some gravel, trace	F			
		5.0		silt (SP-SM)	'	5		
	3D	5.0		Brown black fine to coarse sand, some silt,				REC=6"
	- 02	6.25		gravel (SM)		7		Rig chatter from 6' to 7'.
	4NR	7.0		No recovery		•		No recovery; gravel in
	71417	8.1	50/2"	140 1000very				jar; after two attempts.
	5D	9.0		Proven gravel some fine to engree and trace		10		REC<6"
	อบ		l I	Brown gravel, some fine to coarse sand, trace		10		REC<0
	0.0	11.0		silt (SM)				
	6D	11.0		Brown fine to coarse sand, trace gravel, trace				
		13.0	59-60	silt (SP-SM)			*	
								Rig chatter from 14' to
					_	15		15.5'.
	7D	15.5		Brown gravelly fine to coarse sand, trace silt	Т			
		17.5	48-40	(SP-SM)				
								Hard drilling from 18' to
								19'.
15:00						20		
07:00	8D	20.0	34-46	Do 7D (SP-SM)				REC=6"
03-23-16			TALLED UPO					
Wednesday								
						23.5		
						25		
1	9D	25.0	25-31	Brown fine to coarse sand, trace silt (SP-SM)				
	- 00	27.0	29-30	Brown into to obtaine stanta, trace on (er ein)				
		21.0	23 30					
						30		
	400	20.0	05.00	Drawn fine to readium and trace soons		30		
	10D	30.0		Brown fine to medium sand, trace coarse sand,				
		32.0	65-59	silt (SP-SM)				
						35		
	11D	35.0		Do 10D (SP-SM)				
		37.0	56-61					
					S			
							\ \	
						40		
	12D	40.0		Do 10D (SP-SM)				
		41.85	70-50/2"					
						45		
	13D	45.0	33-45	Brown fine to medium sand, trace silt (SP-SM)				
	.02	46.25	100/4"	table on the management of the control of the				
		10.20	100/4					
						50		
	14D	50.0	44-73	Brown fine to medium sand, trace silt (SP-SM)		- 30		
	טדו	51.8	50/2"	brown line to medium sand, trace sitt (Sir-Sivi)				
		01.0	30/2					

BORING NO. M-12P

M-12P

PROJECT: 340 FLATBUSH AVENUE EXTENSION
LOCATION: BROOKLYN, NEW YORK

 BORING NO.
 M-12P

 SHEET 2 OF FILE NO.
 6

 SURFACE ELEV.
 +13.0

 RES. ENGR.
 ANDY ONG

DAILY		SAMF	PLE				CASING	
PROGRESS	NO.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRATA	DEPTH		REMARKS
Cont'd								
03-23-16								
Wednesday								
15:00						55		
07:00	15D	55.0	34-61	Brown fine to medium sand, trace coarse sand,				
03-24-16		56.3	63-50/2"	silt (SP-SM)				
Thursday								
						60		
	16D	60.0	48-95	Brown fine to medium sand, trace silt (SP-SM)				
		61.3	100/4"					
-					s	65		
	17D	65.0	49-48	Do 16D (SP-SM)		05		
	170	67.0	49-46 47-56	DO 16D (3F-3M)				
		07.0	47-50					
						70		
	18D	70.0	28-36	Do 16D, trace coarse sand (SP-SM)				
	102	72.0	43-42	be rest, trace searce carra (er ent)				
						75		
	19D	75.0	16-15	Do 16D (SP-SM)				
		77.0	18-29					
						78.5		
					С	80		
15:00	20D	80.0	39-50/1"	Hard gray black organic silty clay (OH)	Т	80.6		WC=22, pp>4.5
07:00		80.6			'	82	4*	REC=4"
03-25-16	1C	81.5		Weathered slightly weathered gray gneiss,			9*	Rig chatter from 81' to
Friday		86.5	RQD=25%	closely jointed to broken, iron stained &		0.5		81.5'.
				weathered mineral coated joints		85	12*	*Coring time in
	2C	86.5	DEC_060/	Medium hard slightly weathered to unweathered			16* 10*	minutes per foot.
	20	91.5		gray gneiss, jointed to closely jointed, iron			10*	
		91.5	NQD=0076	stained & weathered & mineral coated joints			8*	
				Stanied & Weathered & Hillieral coated joints	R	90	11*	
							10*	
	3C	91.5	REC=96%	Hard to medium hard unweathered gray gneiss,			10*	
		96.5		blocky, iron stained & weathered & mineral				WC=Water Content
				coated joints			8*	in percent of dry
						95	8*	weight.
14:00							8*	
14:00						96.5		End of Boring at 96.5'.
								pp=Pocket
						100		Penetrometer
								Unconfined Compres-
								sive Strength in tsf.

MRCE Form BL-1

BORING NO. M-12P

Mueser Rutledge Consulting Engineers ROCK CORE SKETCH 14 Penn Plaza - 225 West 34th Street New York, NY 10122 **BORING NO.** M-12P T: 917 339-9300 F: 917 339-9400 3 www.inrce.com SHEET 340 F.A.E FILE NO. 12319 LOCATION: BROOKLYN, MY SURFACE ELEV. ~+13.0 TEST/INSP. EQUIPMENT RES ENGR. A.ONG **REF. CODES/STANDARDS** REC/RQD REC/RQD REC/RQD Run No. Run No. Run No. Run No. REC/RQD RGC= 96% REC: 96% REC: 95/201 93% 30 10 RED : 689 Rad - Box rad = 25 TOP TOP 86.5 TOP TOP ROCK CORE SKETCH T45°//613 **LEGEND JOINTING** MB J= Joint MB - Mechanical Break J968 F12 £) - Angle w/ Horizontal // - Parallel 30× F52 WXF 2 X - Crossing OXFI 2 F - Foliation S - Stratification U - Unfoliated or Unstratified 1 division = 0.1 feet JOINT SURFACE C - Curved 360xfc2 I - Irregular S - Straight JOINT CONDITION 1 - Slick 2 - Smooth J66/18c2 3 - Rough 20 KFSZ **SKETCH SYMBOLS** Joint **Healed Joint** Broken Part of Core Not Recovered Cavities or Vugs in Core 520×+12 Clay Sand

BOTTOM

BOTTOM

NOTES

BOTTOM

Empty Space

BOTTOM

Mueser Rutledge Consulting Engineers 14 Penn Plaza - 225 West 34th Street New York, NY 10122 T: 917 339-9300 F: 917 339-9400 www.mrce.com

PIEZOMETER RECORD

PIEZOMETER OR BORING NO. M-12P

SHEET 4 OF 6

RES ENGR. A

340 F.A.E PROJECT: LOCATION: BROOKLYH, MY PIEZOMETER LOCATION: SUB-CELLAR

☐ SEE SKETCH ON BACK

	ALLATION ETAILS	(FT) 0			depth de	AKE POINT to bottom, ft = pth to top, ft = length, ft =	10.3 10 =L
2000	D. Ac	0			depth de	to bottom, ft = epth to top, ft = length, ft =	10.3 10 =L
A CA	0 de 0 00 0 00 0 00	0			de	pth to top, ft = length, ft =	10.3 10 =L
2000	000 000 000	0				length, ft =	1D = L
200	2 44 2000 0000	0			Saltana a Auro des		
A C	2005 000 000 000				ulameter, in =	, ft = _	0.42 = 2
200	40		1				
A	Δ	1				NDPIPE/RISER	4.19
A	A				diameter, in =	tion of rim, ft =	
	44				diameter, iii =	, 10-	<u> </u>
NO C	25	Ì					
	755		READING	TIME	DEDTH _ DIM	ELEVATION	
SP		a ca	DATE	CLOCK		1 1	REMARKS
		-					
					-9.6	3.4	
43	-	() () ()			-9.7	2.8	
					-97		
					-9.7		
		1026			-97		
-		10,644			-9.7	3.3	
7 -			4/1/160	700	-9.65	3.55	
	* *		4/1/16/13	300	-9.65	3.35	
	1						
!							
							
	'`.						
						j	
	4.	n				3	
-	.						
						 	
٠, ا		20.34					· · · · · · · · · · · · · · · · · · ·
•	- ,	21.36+				 	40000
8	٥	12.1		,			
Α .	,				*	†	
A							
	D A						
4	. 1						
	0 0		20.3 ft	20.3 G A DATE 3/28/16 13 3/28/16 13 3/28/16 13 3/30/16 13 3/31/16 03 3/31/16 03 3/31/16 04 4/1/16 13 4/1/16 13 4/1/16 13 4/1/16 13 4/1/16 13 4/1/16 13 4/1/16 13	3/28/16 1500 3/28/16 1500 3/28/16 1500 3/28/16 1500 3/28/16 1500 3/28/16 1500 3/30/16 1500 4/1/16 1300 4/1/16 1300	DATE CLOCK TO WATER 3/28/16 1500 -9.6 3/29/16 1500 -9.7 3/29/16 1500 -9.7 3/20/16 0700 -9.7 3/30/16 1500 -9.7 3/31/16 0700 -9.7 4/11/16 0700 -9.65 4/11/16 1300 -9.65	DATE CLOCK TO WATER OF WATER 3/26 6 600 - 9.6 3/26 6 0700 - 9.7 3/26 6 0700 - 9.7 3/26 6 0700 - 9.7 3/30 6 1500 - 9

SAND △ △ ✓ □ GRAVEL

9808 BENTONITE ANN GROUT

GROUND SURFACE ELEV. + 13.0

PIEZOMETER NO. M-12P

VARIABLE HEAD PERMEABILITY TEST

Mueser Rutledge Consulting Engineers 14 Penn Plaza - 225 West 34th Street New York, NY 10122 T: 917 339-9300 F: 917 339-9400

BOREHOLE OR

PIEZOMETER NO.

CH'KD BY

INITALE DOINIT

M-12P

DATE

PROJECT: LOCATION: PIEZOMETER LOCATION:

www.mrce.com

SHEET OF FILE NO. TEST NO. **RES ENGR.** CALC. BY DATE

<u>INTAKE POINT</u>			
depth to bottom,	ft =	20.3	
depth to top,	ft =	10.3	
length,	ft =	10	= L
diameter, in = 5,	ft =	0.42	= 2R
STANDPIPE/RISER			
elevation of rim,	ft =		
diameter, in =,	ft =	0.17	= 2r
depth of casing,	ft =	20	2.3
depth to which stand-			
pipe was bailed,	ft =		= Z
or height filled to			

	READING TIM	E	TEST DEPTH,	DEPTH RIM TO	UNBALANCED HEAD	HEAD	
DATE	СГОСК	Δt MiN.	RIM TO WATER H _t (ft.)	TIDE OR GWL H _{STATIC} (ft.)	H _{u=} H _t - H _{STATIC} (ft.)	RATIO H _u /H ₀	REMARKS
3/28/14		STATIC			-	-	- HIGH PERM.
116	1205	1	9.5				IN SUPPOUNDING
	1206	2	9.6				Solls
	1207	3	9.6				- WATER LEVEL
	1208	4	9.6				DECOMED PAPIDLY
	1209	5	9.6				
V	1215	10	9.6				
	1230	15	9.6				
	1235	30	9.6				
	1305	60	9,6				
<u>V</u>	1405	120	9.6				

						BORING	NO.	M-12	Р
						SHEET	6	OF _	6
PROJEC1	Γ		ATBUSH AVE		ION	FILE NO	•	12319	
LOCATIO	N		BROOKLYN, N	NEW YORK		SURFAC	E ELEV.	+1	3.0
BORING	LOCATION	N SE	E BORING LO	CATION PLAN	N	DATUM		NAVD-88	3
BORING I	<u>EQUIPMEN</u>	NT AND METHO	DDS OF STABIL	IZING BOREHO	<u>DLE</u>				
		TYPE OF	FEED				_		
TYPE OF E	BORING RIC	DURING (CORING	CASING U	JSED	X	YES	NO	
TRUCK		MECHANI	CAL	DIA., IN.	5	DEPTH, F	T. FROM	0 TO	O13
SKID	X	HYDRAUL	IC X	DIA., IN.	4	DEPTH, F	T. FROM	0T0	O39
BARGE		OTHER		DIA., IN.		DEPTH, F	T. FROM	T(o
OTHER									
TYPE ANI	D SIZE OF	:		DRILLING	MUD USED		YES	X NO	
D-SAMPLE	R 2" O.	D. SPLIT SPOO	N	DIAMETE	R OF ROTARY I	BIT, IN.	_	5-7/8, 3-3/4	4
U-SAMPLE	R			TYPE OF	DRILLING MUD				
S-SAMPLE	 R								
CORE BAR	RREL NX D	OUBLE BARREL		AUGER U	SED		YES	X NO	
CORE BIT	NX D	IAMOND		TYPE ANI	D DIAMETER, IN	٧.			
DRILL ROD	-			= /			-		
				*CASING	HAMMER, LBS.	300	AVERAG	E FALL, IN.	
					R HAMMER, LB			E FALL. IN.	30
					ATHEAD WITH D		_		
WATERI	EVEL ORS	SERVATIONS II	N BOREHOLE	0020 07	VIIIE/ID WITH	3011011111111	VILIT.		
VV/VILIVE	L VEL OBC	DEPTH OF	DEPTH OF	DEPTH TO					
DATE	TIME	HOLE	CASING	WATER		CONDITIO	ONS OF OR	SERVATION	
03-23-16	07:00	-20	13	-9.7			R LEVEL R		
03-24-16	07:00	-55	21	-5.6			R LEVEL R		
03-25-16	07:00	-81.5	39	-6.1			R LEVEL R		
03-28-16	07:00	-28	29	-9.7			R LEVEL R		
03-28-16	12:00	-20.3	20	-9.7			VELL READ		
00 20 10	12.00	20.0	20	0.7		•	VELL KEKD		
	<u> </u>	1							
PIFZOME	TER INST	ALLED X	YES	NO SKE	ETCH SHOWN	ION			
STANDPIP	F:	TYPE	PVC	ID, IN.	2 LE	NGTH, FT.	10	TOP ELEV.	+12.5
INTAKE EL		TYPE	PVC	OD, IN.		NGTH, FT.	10	TIP ELEV.	+3.0
FILTER:		MATERIAL	SAND	OD, IN.		NGTH, FT.	15	BOT. ELEV.	-2.0
I ILILIX.		WATERIAL	SAND	OD, IN.		.INO 111, 1 1.	10		
PAY QUA	NTITIES								
	RY SAMPLI	E BODING	LIN. FT.	81.5	NO. OF 3" SHI	EI DV TI IDE (SAMDLES		
	_				NO. OF 3" UN				
	I-SAMPLE B		LIN. FT.	15		DISTURBED	SAMPLES		
COKE DRI	LLING IN R	JUK	LIN. FT.		OTHER:				
DODING.	00NTD 40	T 05		401115			00 1110		
	CONTRAC	TOR	0110 01151	AQUIFI	ER DRILLING	& IESTING		TT 00140/55	
DRILLER			GUS SURI		_HELPERS			TT ODWYER	
REMARK			PIE	ZOMETER INS	I ALLED UPO	N COMPLET			
	T ENGINE	-		ANDY ONG			DATE	03-2	21-16
CLASSIFI	CATION C	HECK:	CHERYL J	. MOSS	TYPING CHE	ECK:			
MRCE Form BS	S-1						во	RING NO.	M-12P

P1069

LERA

APPENDIX C

Structural Design Criteria

AB ABV AC	ANCHOR BOLT ABOVE AIR CONDITIONER	K KPF KSI	KIP (1000 POUNDS) KIPS PER SQUARE FOOT KIPS PER SQUARE INCH
ACI ADD'L	AMERICAN CONCRETE INSTITUTE ADDITIONAL	L	LOW
ADJ AFF	ADJACENT ABOVE FINISHED FLOOR	LB LBS	LINK BEAM POUNDS
AISC	AMERICAN INSTITUTE OF STEEL CONSTRUCTION	LB/FT	POUNDS PER FOOT
LT NCH	ALTERNATE ALUM ALUMINUM ANCHOR	Ld LG	DEVELOPMENT LENGTH LONG
NG PPD	ANGLE APPROVED	LL LLRS	LIVE LOAD LATERAL LOAD RESISTING SYSTEM
APPROX ARCH	APPROXIMATE ARCHITECTURAL	LP LRFD	LOW POINT LOAD RESISTANCE FACTOR DESIGN
ASTM AVG	AMERICAN SOCIETY FOR TESTING AND MATERIALS	LT	LIGHT
WS	AVERAGE AMERICAN WELDING SOCIETY	LW MAX	LIGHT WEIGHT MAXIMUM
ETW	BASE BETWEEN	MAS MATER	MASONRY MATERIAL
F	BRACE FRAME	MAX	MAXIMUM
<Τ -	BRACKET BUILDING LINE	MC MD	MOMENT CONNECTION METAL DECK
.DG ∕I	BUILDING BEAM	MECH MEP	MECHANICAL MECHANICAL ELECTRICAL AND PLUM
OTT RK	BOTTOM BRICK	MEZZ MF	MEZZANINE MOMENT FRAME
/STL	BOTTOM OF STEEL	MFG	MANUFACTURER
5	BOTH SIDES	MIN MISC	MINIMUM MISCELLANEOUS
NT ;	CANTILEVER MINI PILE CAP	N	NORTH
-	CAISSON CAP CUBIC FOOT	NA NIC	NOT APPLICABLE NOT IN CONTRACT
)	CENTER OF GRAVITY	NO	NUMBER
P JT	CAST IN PLACE CONCRETE JOINT	N-S NTS	NORTH-SOUTH NOT TO SCALE
.G	CENTER LINE CEILING	NW	NORMAL WEIGHT
R 1	CLEAR CONSTRUCTION MANAGER	O/C OPNG	ON CENTER OPENING
U L	CONCRETE MASONRY UNITS COLUMN	OPP	OPPOSITE
NC	CONCRETE	PCF	POUNDS PER CUBIC FEET
ND NN	CONDITIONS CONNECTION	PL PLF	PLATE POUNDS PER LINEAR FOOT
NST NT	CONSTRUCTIONS CONTINUOUS	PSF PSI	POUNDS PER SQUARE FOOT POUNDS PER SQUARE INCH
NTR ORD	CONTRACTOR COORDINATE	PT	POST TENSION
RR	CORRUGATED CUBIC YARD	RC	REINFORCED CONCRETE
,		RD REF	ROOF DRAIN REFERENCE
MO PT	DEMOLITION DEPARTMENT	REINF REQ'D	REINFORCEMENT REQUIRED
<u>, </u>	DETAIL DIAMETER	RFI	REQUEST FOR INFORMATION
<u> </u>	DIMENSION DIRECTION	S SB	SOUTH SPANDREL BEAM
` L	DOWN DOWEL	SCHED	SCHEDULE
G	DRAWING	SECT SF	SECTION SQUARE FOOT
	EAST	SHT SL	SHEET SLAB
	EACH EACH FACE	SPA SPEC	SPACING SPECIFICATIONS
EC .	ELEVATION ELECTRIC	SQ	SQUARE
EV	ELEVATOR	SR STD	STUDRAIL STANDARD
IBD CL	EMBEDMENT ENCLOSURE	STIFF STL	STIFFENER STEEL
R S	ENGINEER OF RECORD EDGE OF SLAB	STRUCT SW	STRUCTURAL SHEARWALL
	EMBEDDED PLATE EQUAL	SIM	SIMILAR
UIP	EQUIPMENT	T&B	TOP AND BOTTOM
C		THK T/	THICK TOP OF
W IST	EXISTING	TBD TEMP	TO BE DETERMINED TEMPORARY
P P JT		TSF TYP	TONS PER SQUARE FOOT TYPICAL
T TR			
		UON U	UNLESS OTHERWISE NOTED UPTURNED BEAM
)	FLOOR FOUNDATION FACE OF BUILDING	VERT	VERTICAL
3	FACE OF BUILDING FIRE PROOFING	VIF	VERIFY IN FIELD
<u> </u>	FOOT FOOTING	W W/	WEST WITH
	GAUGE	W/O	WITH OUT
LV	GALVANIZED GENERAL CONTRACTOR	WF WP	WIDE FLANGE WORKING POINT
	GRADE BEAM	WPG WS	WATER PROOFING WATER STOP
TG P. BD	GRATING GYPSUM BOARD	WT WWF	WIND TRUSS WELDED WIRE FABRIC
_	HIGH	Ę	CENTERLINE
)R ST	HEADER HEIGHT	ዊ	PLATE
)RIZ	HORIZONTAL HIGH POINT	⊥L &	ANGLE AND
	HOUR	ø @	DIAMETER AT
AC	HIGH STRENGTH HEAT, VENTILATION & AIR CONDITIONING	₩	<i>(</i>) (
	INSIDE DIAMETER		
	INTERIOR FACE INCH		
CL -0	INCLUDING INFORMATION		
SUL	INSULATION		

JOINT

GENERAL NOTES:

1. ALL WORK TO BE PERFORMED IN COMPLIANCE WITH THE NEW YORK CITY BUILDING CODE, LATEST

EDITION AND ALL SUPPLEMENTS. 2. CONTRACTOR SHALL VERIFY ALL CONDITIONS AND DIMENSIONS IN THE FIELD AND BE RESPONSIBLE FOR ACCURATE COORDINATION WHERE POSSIBLE. EXISTING FRAMING DIMENSIONS WERE TAKEN FROM EXISTING DWGS. AND SHALL BE VERIFIED ON SITE. DISCREPANCIES SHALL BE REPORTED TO ARCH. AND ENGINEER BEFORE PROCEEDING.

3. TEMPORARY SHORING IS REQUIRED AT ALL LOCATIONS WHERE PARTIAL REMOVAL OF BEAMS IS REQUIRED. CONTRACTOR IS RESPONSIBLE FOR ENGINEERING AND CONTROLLED INSPECTION OF 4. THE CONTRACTOR SHALL USE THESE DRAWINGS IN CONJUNCTION WITH THE ARCHITECTURAL AND

MECHANICAL DRAWINGS. IN THE EVENT OF CONFLICTS, THE CONTRACTOR SHALL NOTIFY THE ARCHITECT AND THE ENGINEER. 5. ALL UNDERPINNING, SHEETING, SHORING OR OTHER CONSTRUCTION REQUIRED FOR THE SUPPORT OF ADJACENT PROPERTIES, BUILDINGS, SIDEWALKS, UTILITIES, ETC., SHALL BE SUBJECT TO SPECIAL INSPECTION AS REQUIRED BY THE CODE. THE CONTRACTOR SHALL RETAIN A LICENSED PROFESSIONAL ENGINEER ACCEPTABLE TO THE ENGINEER OF RECORD TO PROVIDE THE NECESSARY DESIGN AND THE REQUIRED INSPECTION. THE CONTRACTOR'S PROFESSIONAL ENGINEER SHALL PREPARE AND FILE THE REQUIRED FORMS FOR THE WORK WITH THE BUILDING DEPARTMENT.

FOUNDATION NOTES:

1. FOUNDATION DESIGN IS BASED ON GEOTECHNICAL REPORT BY MUESER RUTLEDGE CONSULTING EWC. 2. THE STRUCTURE TO BE SUPPORTED ON CAISSONS AS RECOMMENDED BY MUESER RUTLEDGE CONSULTING EWC GEOTECHNICAL REPORT. 3. WHERE EXISTING FOOTING OR FOUNDATIONS OF ADJACENT PROPERTY IS LOWER THAN ELEVATIONS SHOWN, NEW FOUNDATIONS ARE TO BE LOWERED TO SAME ELEVATION. WHERE NEW FOUNDATION IS LOWER THAN

EXISTING FOUNDATION CONTRACTOR IS TO UNDERPIN EXISTING FOUNDATION. 4. DESIGN IS PERFORMED IN ACCORDANCE WITH MUSER RUTLEDGE CONSULTANT ENGINEERS GEOTECHNICAL 5. VERTICAL CONSTRUCTION JOINTS IN ALL FOUNDATION WALLS SHALL BE USED ONLY IF UNAVOIDABLE, OR UNLESS OTHERWISE NOTED, AND TO BE LOCATED AT LEAST 4-0" FROM ANY SUPPORTING COLUMN OR WALL OPENING. DISTANCE BETWEEN JOINTS IN WALL SHALL BE ALLOWED AS PER SPECIFICATIONS. NO HORIZONTAL CONSTRUCTION JOINTS WILL BE ALLOWED IN GRADE BEAMS.

6. IN NO CASE SHALL TRUCKS, BULLDOZERS, OR OTHER HEAVY EQUIPMENT BE PERMITTED CLOSER THAN 8'-0" FROM ANY FOUNDATION WALL UNLESS APPROVED BY THE ENGINEER. 7. TEMPORARY BRACING SHALL BE PROVIDED FOR ALL BUTTRESSES. WHERE BUTTRESSES DO NOT EXIST OR SPACING BETWEEN BUTTRESSES EXCEED 25 FEET, AND WHERE THE DIFFERENCE IN LEVEL BETWEEN INSIDE AND OUTSIDE GRADE IS MORE THAN 4'-0", INTERMEDIATE BRACING SHALL BE PROVIDED. WHERE RAMPS OCCUR, THE GRADE ELEVATION OUTSIDE OF RAMP WALLS SHALL BE USED IN FIGURING THE DIFFERENCE IN LEVEL. CORNER BUTTRESSES NEED NOT BE BRACED. NO BACKFILLING IS TO BE DONE BEFORE ALL SLABS BRACING WALLS ARE IN PLACE UNLESS APPROVED BY THE ENGINEER. PROVIDE TEMPORARY BRACING FOR ALL PIERS AND SUMP PITS.

FOR THE VARIOUS TRADES. WALL POCKETS TO RECEIVE BEAMS AND SLABS SHALL BE PROVIDED AS REQUIRED FOR THE SUPERSTRUCTURE. SHOP DRAWINGS SHOWING THE POSITION OF OPENINGS SHALL BE SUBMITTED TO THE STRUCTURAL ENGINEER PRIOR TO PLACING CONCRETE. 9. MINIMUM COVER FOR REINFORCING STEEL SHALL BE 1½" FOR SLABS AND INTERIOR WALL SURFACES EXPOSED TO VEHICULAR/PEDESTRIAN TRAFFIC; AND COLUMNS (TIES, STIRRUPS OR PRIMARY REINFORCEMENT). FOR ALL CONCRETE EXPOSED TO WEATHER AND EARTH FILL, COVER SHALL BE 2". FOR CONCRETE PLACED AGAINST EARTH, MINIMUM COVER SHALL BE 3". TOP COVER FOR

8. CONTRACTOR TO INSTALL ALL PIPE SLEEVES, BOXED OPENINGS, ANCHOR BOLTS, ETC., AS REQUIRED

REINFORCEMENT IN RETAIL SLABS TO BE 3/4". 10. THE STRUCTURAL ENGINEER OR HIS FIELD QUALIFIED REPRESENTATIVE MUST CHECK AND APPROVE ALL STEEL REINFORCING PRIOR TO CONCRETE PLACEMENT. 11. NO STRUCTURAL ELEMENTS WILL BE SUPPORTED BY STRUCTURAL FILL

CAISSONS NOTES:

1. THE DESIGN AND INSTALLATION OF CAISSON PILE CAPS, AND RELATED CONSTRUCTION IS TO CONFORM TO THE REQUIREMENTS SET FORTH IN THE NEW YORK CITY BUILDING CODE AND THE SPECIFICATIONS. 2. DRILLED CAISSONS SHALL HAVE THE FOLLOWING PARAMETERS AS PER RECOMMENDATION FROM GEOTECHNICAL

A. 9.625" Ø, 16" Ø MINI CAISSONS AND 40" Ø CAISSONS SEE FO-200 FOR BALANCE OF INFO. B. UPLIFT AND LATERAL LOAD FIELD TEST ARE REQUIRED. 4. CAISSON INSTALLATION TO BE SUPERVISED BY A LICENSED PROFESSIONAL ENGINEER. 5. CAISSON OPERATIONS TO BE IN ACCORDANCE WITH THE NEW YORK CITY BUILDING CODE, AND ARE SUBJECT

TO SPECIAL INSPECTION IN ACCORDANCE WITH NEW YORK CITY BUILDING CODE. 6. A PLAN SHOWING THE IDENTIFICATION OF ALL CAISSON AND A CAISSON NUMBERING PLAN IS TO BE SUBMITTED TO THE ENGINEER OF RECORD FOR FILING WITH THE BUILDING DEPARTMENT PRIOR TO COMMENCEMENT OF DRIVING OPERATIONS.

7. ALL CAISSON GROUPS AND CAPS TO BE CONCENTRIC WITH COLUMNS AND WALLS ABOVE UNLESS OTHERWISE 8. RECORDS OF PENETRATION OF EVERY CAISSON AND THE BEHAVIOUR OF SAME DURING DRILLING ARE TO BE SUBMITTED TO THE ENGINEER OF RECORD.

9. AN "AS-DRIVEN" CAISSON LOCATION PLAN AND CAISSON LOGS ARE TO BE SUBMITTED TO THE ENGINEER OF RECORD FOR APPROVAL, NO MINI-PILES CAPS ARE TO BE PLACED BEFORE THIS IS DONE. 10. ESTIMATED AVERAGE CAISSON LENGTH IS PER GEOTECHNICAL CONSULTANT. CAISSON LENGTH COULD VARY DUF TO ACTUAL SOIL CONDITION. 11. FOR DETAILS REFER TO GEOTECHNICAL CONSULTANT REPORT AND SPECIFICATIONS.

CAISSON INSTALLATION PROCEDURE

1. MONITOR SUBWAY STRUCTURES FOR VIBRATIONS DURING DRILLED PILE INSTALLATION (AS A MINIMUM MONITOR ALL POINTS WITHIN 100 FEET OF DRILLED PILE INSTALLATION). 2. DRILL PILE CASING THROUGH SOIL OVERBURDEN USING INTERNAL FLUSH ROTARY DRILLING METHODS AND POSITIVE HEAD ON DRILLING FLUIDS. EXTERNAL FLUSH WILL NOT BE PERMITTED. GENERALLY KEEP TIP OF CASING PLUGGED WITH TWO FEET OF SOIL WHILE ADVANCING THE CASING. NO SOIL

REMOVAL IS PERMITTED BEYOND TIP OF CASING. 3. DOWN-THE-HOLE HAMMER WILL NOT BE PERMITTED EXCEPT FOR PENETRATING OBSTRUCTION OR BOULDERS IN THE SOIL AND FOR DRILLING ROCK SOCKETS. 4. DRILL BIT SHALL GENERALLY NOT EXTEND BEYOND CASING TIP. USE OF COMPRESSED AIR WILL NOT BE PERMITTED, EXCEPT WHEN DRILLING WITH DOWN-THE-HOLE HAMMER.

5. FOR ROCK SOCKET BOND PILES, DRILL THE ROCK SOCKET AND LOWER THE REINFORCEMENT BAR WITH CENTRALIZERS AND TREMIE-GROUT TUBE TO BOTTOM OF ROCK SOCKET. THEN FILL SOCKET AND CASING WITH 6000 OR 8000 PSI TREMIE GROUT DEPENDING ON FINAL COMPRESSIVE MINI PILE CAPACITY, UNTIL CLEAN UNCONTAMINATED GROUT FLOWS OUT FROM TOP OF PILE. 6. PILE CASING SHALL NOT BE INSTALLED CLOSER THAN 10 FEET FROM ADJACENT COMPLETED PILE THAN

IS LESS THAN 48 HOURS OLD. 7. A SET OF SIX GROUT CUBES SHALL BE MADE FOR EACH PILE FOR THE 6000 PSI GROUT AND TESTED FOR 3, 7 AND 28 DAYS COMPRESSIVE STRENGTH. 8. CATALOG CUTS FOR THE DRILLING RIG/S TO BE USED FOR INSTALLATION OF THE OUTER AND INNER

CASING WILL BE PROVIDED TO NYCT PRIOR TO BEGINNING INSTALLATION.

CONCRETE NOTES

A. CONCRETE

1. ALL CONCRETE SHALL BE NORMAL WEIGHT CONTROLLED CONCRETE, U.O.N., AND COMPLY WITH THE A.C.I. BUILDING CODE AND THE CURRENT NEW YORK CITY BUILDING CODE

2. CONCRETE STRENGTH SHALL BE AS FOLLOWS, UNLESS OTHERWISE NOTED, ON PLAN. FOUNDATION, PIERS, CAISSON CAPS & MAT 10000 PSI SLAB ON GROUND

7000 PSI, USE 14000 PSI FOR SW PART OF FND. WALL. BUTTRESS & FND WALL SHEAR WALLS SEE COLUMN SCHEDULE COLUMNS SEE COLUMN SCHEDULE ALTERNATE IF SUPPORTING COLUMN STRENGTH IS 5950 PSI OR GREATER THE CONCRETE SLABS (IF POURED BEFORE THE COLUMNS ABOVE) MUST BE OF A STRENGTH ACCORDING TO THE "DETAIL OF BEAM AND SLAB CONCRETE PLACEMENT AT HIGH STRENGTH COLUMN." DWG. S-961.

3. NO CONCRETE SHALL BE PLACED UNTIL THE CONTRACTOR HAS INSTALLED ALL THE INSERTS AND DOVETAILS NECESSARY TO PROVIDE SUPPORT FOR MULLIONS, APPLIED FINISHES, PARTITIONS, PIPES, DUCTS, EQUIPMENT, ETC., AS REQUIRED IN ARCHITECTURAL, H.V.A.C. AND STRUCTURAL DRAWINGS. WHERE BRICK VENEER EXCEEDS 18" IN HEIGHT, PROVIDE DOVETAIL TYPE MASONRY ANCHORS SPACED AT 24" O/C IN ALL BACK UP VERTICAL CONCRETE SURFACES. 4. CONTRACTOR SHALL VERIFY LOCATIONS AND DIMENSIONS OF ALL SLOTS, PIPE SLEEVES, DUCTS AND ANY

OTHER CONCRETE PENETRATIONS AS REQUIRED FOR VARIOUS TRADES BEFORE CONCRETE IS PLACED. SHOP DRAWINGS SHOWING COMPOSITE LAYOUT OF ALL PENETRATIONS MUST BE SUBMITTED TO THE ENGINEER FOR APPROVAL PRIOR TO CONSTRUCTION. 5. ALL PLUMBING AND ELECTRICAL SLOTS SHALL BE FILLED WITH CONCRETE TO THE SAME DEPTH AS

FLOOR AFTER CONDUITS AND/OR PIPES ARE INSTALLED. 6. NO PIPES OR CONDUITS EXCEEDING 1/3 SLAB THICKNESS IN OUTSIDE DIAMETER NOR OVER NOMINAL 2" INSIDE DIAMETER SHALL BE EMBEDDED IN THE STRUCTURAL CONCRETE FLOOR OR SLAB. NO PIPES AND/OR CONDUITS SHOULD BE PLACED CLOSER THAN 3 DIAMETER ON CENTER NOR PASS WITHIN 24" OF COLUMN FACE, U.O.N. JUNCTION BOXES MAY BE PLACED IN STRUCTURAL CONCRETE SLAB BUT SHALL NOT EXCEED 4½" X 4½" X 3½" IN DEPTH AND SHALL BE SEPARATED FROM OTHER JUNCTION BOXES BY NOT LESS THAN 8" OF CONCRETE.

7. ALL MEMBERS IN THE FLOOR SYSTEM INCLUDING BEAMS, BRACKETS, COLUMN CAPITALS AND HAUNCHES SHALL BE PLACED MONOLITHICALLY. WHERE VERTICAL CONSTRUCTION JOINTS ARE NECESSARY, MAY BE MADE AT CENTER OF BEAM OR SLAB USING APPROVED BULKHEADS AND ADDITIONAL REINFORCING AS SHOWN ON DETAILS.

8. NO CONCRETE FLOOR SYSTEM IS TO BE INSTALLED UNTIL AT LEAST TWO HOURS HAVE PASSED AFTER THE SUPPORTING COLUMNS AND WALLS ARE PLACED. 9. WHEN PLACING CONCRETE AGAINST AN ADJACENT BUILDING OR AT EXPANSION JOINT, AT LEAST 1" (U.O.N.) OF HIGH DENSITY STYROFOAM SHALL BE PLACED AT THE INTERFACE BETWEEN THE EXISTING AND NEW CONCRETE. IN ADDITION, THE CONTRACTOR MUST TAKE ALL THE NECESSARY MEASURES SO AS NOT TO CREATE ANY DAMAGE TO THE EXISTING CONSTRUCTION WHILE PLACING THE NEW

10.ALL WORK MARKED S.S. (SUPERSTRUCTURE) IN FOUNDATION DRAWINGS SHALL BE PART OF THE SUPERSTRUCTURE CONTRACT. 11.ALL SLABS ON GROUND ARE IN SUPERSTRUCTURE CONTRACT (U.O.N.). SLABS WITHIN THE BUILDING ARE FRAMED (REINFORCED) SLABS SUPPORTED BY PILE CAPS AND GRADE BEAMS. SEE GROUND FLOOR

FRAMING PLANS. 12. TEMPORARY SHORING AND RESHORING SHALL REMAIN IN PLACE AT LEAST 28 DAYS AFTER PLACEMENT OF CONCRETE. 13.NO DEVIATION FROM THE STRUCTURAL PLANS SHALL BE PERMITTED WITHOUT THE EXPRESS WRITTEN CONSENT OF THE STRUCTURAL ENGINEER.

B. REINFORCEMENT

1. ALL STEEL REINFORCEMENT (STIRRUPS AND TIES INCLUSIVE) SHALL HAVE AN ULTIMATE TENSILE STRENGTH OF 90,000 PSI AS PER A.S.T.M. A615 GRADE 60. THE CONTRACTOR SHALL FURNISH AND INSTALL ALL THE CHAIRS, REBARS, TIES, SPACERS, ETC., TO SECURE AND SUPPORT THE

REINFORCING WHILE PLACING THE CONCRETE. 2. THE CONTRACTOR MUST SUBMIT REINFORCING SHOP DRAWINGS TO THE STRUCTURAL ENGINEER FOR REVIEW. NO CONSTRUCTION IS TO BE STARTED UNTIL THE SHOP DRAWINGS ARE REVIEWED BY THE

3. THE STRUCTURAL ENGINEER OR HIS FIELD QUALIFIED REPRESENTATIVE MUST CHECK AND APPROVE ALL STEEL REINFORCEMENT PRIOR TO CONCRETE PLACEMENT. 4. ALL REINFORCING BARS MARKED CONTINUOUS SHALL BE LAPPED AT SPLICES AND CORNERS IN CONFORMANCE WITH LAP SPLICE TABLES IN TYPICAL DETAILS UNLESS OTHERWISE NOTED. LAP

CONTINUOUS TOP BARS AT CENTER BETWEEN SUPPORTS AS REQUIRED. TERMIN- ATE CONTINUOUS

BARS AT END SUPPORTS WITH STANDARD HOOKS, U.O.N. 5. MINIMUM COVER FOR REINFORCING STEEL SHALL BE "4" FOR INTERIOR SLABS AND INTERIOR WALL SURFACES; 1½" FOR BEAMS, GIRDERS AND COLUMNS (TIES, STIRRUPS OR PRIMARY REINFORCEMENT) FOR ALL CONCRETE EXPOSED TO WEATHER AND EARTH FILL, COVER SHALL BE 2" (1½" FOR STIRRUPS). FOR CONCRETE PLACED AGAINST EARTH, MINIMUM COVER SHALL BE 3".

C. CODES AND TESTS

1. THIS STRUCTURE HAS BEEN DESIGNED UNDER THE PROVISIONS OF THE NEW YORK CITY BUILDING CODE AS AMENDED AND A.C.I. 318. 2. ALL CONTROLLED CONCRETE SHALL COMPLY WITH THE A.C.I. 318 BUILDING CODE. APPLICATION FOR CONTROLLED CONCRETE WITH CONCRETE TESTS AND CURVES OF TESTS FOR THE PRELIMINARY DESIGN MIX PREPARED BY AN APPROVED LABORATORY MUST BE SUBMITTED TO THE ENGINEER FOR FILING WITH THE BUILDING DEPARTMENT. NO CONCRETE SHALL BE PLACED WITHOUT THE DESIGN MIX BEING APPROVED BY THE BUILDING DEPARTMENT. 3. DESIGN AND CONSTRUCTION OF FORMWORK IS TO COMPLY WITH THE A.C.I. 318-89 BUILDING CODE AND NEW YORK CITY BUILDING CODE AS AMENDED.

4. THE DESIGN DETAILS AND NOTES INCLUDED HEREIN ARE IN COMPLIANCE WITH LOCAL LAW 17/95.

D. SEISMIC AND WIND CRITERIA

1. THE STRUCTURE HAS BEEN DESIGNED IN ACCORDANCE WITH THE LATEST NEW YORK CITY BUILDING CODE (NYCBC 2014).

2. <u>WIND DESIGN DATA:</u>

BASED ON PROJECT SPECIFIC WIND TUNNEL TEST - RWDI - DATED 04/13/2015 - DESIGN BASE SHEAR (V) E-W: 4400 kips N-S: 2600 kips

3. <u>EARTHQUAKE DESIGN DATA:</u>

 SEISMIC IMPORTANCE FACTOR = 1 – STRUCTURAL OCCUPANCY CATEGORY:

 $-S_{S} = 0.281g, S_{1} = 0.073g$

- SITE CLASS = C $-S_{DS} = 0.225g, S_{D1} = 0.083g$

- SEISMIC DESIGN CATEGORY

- SEISMIC FORCE RESISTING SYSTEM = ORDINARY REINFORCED

= B

 DESIGN BASE SHEAR (V): E/W = 2400 kipsN/S = 2400 kips

- SEISMIC RESPONSE COEFFICIENT (C_c): E/W = 0.01N/S = 0.01

- RESPONSE MODIFICATION FACTOR: R = 5 ANALYSIS PROCEDURE USED = EQUIVALENT LATERAL FORCE PROCEDURE

4. SNOW DESIGN DATA: - GROUND SNOW LOAD, Pg = 25 psf

- FLAT-ROOF SNOW LOAD, Pf = 20 psf - SNOW EXPOSURE FACTOR, Ce = 0.9

- SNOW EXPOSURE FACTOR, Is = 1.0

- THERMAL EXPOSURE FACTOR, Ct = 1.0

5. STRUCTURAL SEPARATIONS, (NYCBC-1613.7): ALL STRUCTURES SHALL BE SEPARATED FROM ADJACENT STRUCTURES. WHEN A STRUCTURE ADJOINS A PROPERTY LINE NOT COMMON TO A PUBLIC WAY (TYPICALLY SIDE OR REAR LOT LINES), THAT STRUCTURE SHALL

FOR EACH 50 FEET OF HEIGHT AND A MINIMUM OF 1 INCH FOR STRUCTURES WITH HEIGHTS LESS THAN 50 FEET. SMALLER SEPARATIONS OR PROPERTY LINE SETBACKS SHALL BE PERMITTED WHEN JUSTIFIED BY RATIONAL ANALYSIS BASED ON MAXIMUM EXPECTED GROUND MOTIONS WITH A MINIMUM SEPARATION OF INCH ALONG THE FULL HEIGHT OF THE STRUCTURE.

ALSO BE SET BACK FROM THE PROPERTY LINE BY AT LEAST 1 INCH

MASONRY NOTES

1. SEE ARCHITECTURAL DRAWINGS AND SPECIFICATIONS FOR COMPLETE REQUIREMENTS FOR C.M.U. MASONRY CONSTRUCTION AND APPEARANCE. DETAILS AND NOTES SHOWN ON THE STRUCTURAL DRAWINGS ARE INTENDED TO SUPPLEMENT ARCHITECTURAL REQUIREMENTS AND TO DEFINE ELEMENTS WHICH PROVIDE STRUCTURAL STRENGTH AND STABILITY. 2. DETAILS, SECTIONS, SCHEDULES, ETC. AND THESE NOTES, REPRESENT THE

MINIMUM REQUIREMENTS FOR STRUCTURAL ADEQUACY. WHERE ARCHITECTURAL REQUIREMENTS DIFFER FROM STRUCTURAL, THE MORE STRINGENT SHALL BE FOLLOWED. 3. CODE: MASONRY WALL CONSTRUCTION SHALL CONFORM TO THE NEW YORK CITY

BUILDING CODE AND TO ACI 530/ASCE-5 AS REFERENCED BY THE NYC CODF. 4. MASONRY UNITS SHALL BE LIGHTWEIGHT HOLLOW LOAD BEARING CONCRETE MASONRY (CMU). COMPRESSIVE STRENGTH OF MASONRY F'M SHALL BE A MINIMUM OF 1,500 PSI. 5. MORTAR SHALL BE TYPE M OR S.

6. HORIZONTAL JOINT REINFORCEMENT SHALL BE TRUSS TYPE GALVANIZED COLD-DRAWN STEEL WIRE CONFORMING TO ASTM A 951. 7. PROVIDE HORIZONTAL JOINT REINFORCEMENT IN EVERY OTHER JOINT (16" O.C. VERTICALLY) UNLESS PLANS OR DETAILS CALL FOR CLOSER SPACING OR ADDITIONAL REINFORCEMENT.

8. BAR REINFORCEMENT: ASTM A 615 GRADE 60. PER SCHEDULE. FOR ADDITIONAL REINFORCEMENT SEE WALL REINFORCEMENT FLEVATION. 9. ALL CELLS WITH REINFORCEMENT SHALL BE GROUTED SOLID FOR THE FULL EXTENT OF BAR, VERTICAL AND HORIZONTAL.

10. GROUT SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 2,000 PSI. GROUT SHALL BE "FINE" AS DEFINED BY ASTM C 476. 11. STEEL ANGLES: ASTM A 36. STEEL IN AN EXTERIOR WALL OR EXPOSED TO THE EXTERIOR SHALL BE GALVANIZED. 12. CONTRACTOR SHALL COORDINATE ALL MASONRY WORK WITH WORK OF OTHER TRADES: ARCHITECTURAL, STRUCTURAL,

NON-STRUCTURAL ITEMS SHOWN ON THE STRUCTURAL/FOUNDATION DRAWINGS

1. THE FOLLOWING NON-STRUCTURAL ITEMS MAY BE SHOWN ON THE STRUCTURAL AND/OR FOUNDATION DRAWINGS FOR THE PURPOSE OF CLARITY IN INTERFACE WITH STRUCTURAL AND/OR FOUNDATION WORK. ITEMS BELOW MAY NOT BE FULLY DEFINED ON THE STRUCTURAL/FOUNDATION DRAWINGS. THE INFORMATION FOR NON-STRUCTURAL ELEMENTS IS FURNISHED BY OTHER CONSULTANTS AS LISTED BELOW. ALL RFI AND SHOP DRAWINGS RELATED TO THESE NON-STRUCTURAL ITEMS SHALL BE SUBMITTED TO THE CONSULTANTS LISTED BELOW FOR THEIR REVIEW AND APPROVAL.

GEOTECHNICAL ENGINEER: - SUPPORT OF EXCAVATION

- DRIVEN CAISSONS AND MINI PILES INCLUDING REINFORCEMENT

ARCHITECT OF RECORD: - SUMP PITS

- FOUNDATION/UNDERSLAB WATERPROOFING, DAMPPROOFING SYSTEMS - WALL AND UNDERSLAB DRAINAGE SYSTEM, INCLUDING SUMP PITS, GRAVEL & PIPING, CLEANOUTS

WATERPROOFING/DAMPPROOFING APPLIED TO EXPOSED SURFACES. ELEVATOR OR SUMP PIT INTERIOR SURFACES FIREPROOFING - CONCRETE CURBS: HEIGHT, WIDTH, EXTENT, LOCATION

- BRICK, BLOCK, TILE MASONRY, METAL PANELS, PRECAST FACADE

PANELS, CURTAIN WALLS AND ALL OTHER FACADE SYSTEMS - ROOFING SYSTEMS, DRAIN LOCATIONS, SLOPES TO DRAINS FILLS, INSULATION, PAVERS OR GRAVEL

FLOATING/SECONDARY SLABS

LOADING SCHEDULE				
OCCUPANCY	PARTITION/FILL &/OR FINISHES (PSF)	CEIL. & MECH. (PSF)	LIVE LOAD	
ROOF	30	5	100	
STAIRS	_	5	100	
CORRIDORS	30	5	100	
RESIDENTIAL	12	5	40	
MECHANICAL ROOMS	20	5	75	
PUBLIC ROOF	50	5	100	
LOBBIES/ PUBLIC TERRACE/ RETAIL	30	5	100	

MONITORING SYSTEM NOTES:

1. INSTALLATION AND MAINTENANCE OF THE MONITORING SYSTEM SHALL BE PERFORMED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS AND AS SHOWN ON TABLE 1

THROUGH 3 ON THIS DRAWING .. . MONITORING RESULTS SHALL BE PROVIDED TO THE OWNER'S ENGINEER ON A DAILY BASIS. RESULTS SHALL BE PRESENTED IN A CLEAR FORMAT AND SHALL INCLUDE PREVIOUS READINGS. SUCH RESULTS SHALL BE PROVIDED TO NYCT FIELD INSPECTOR AND COPY TO NYCT OUTSIDE PROJECTS GENERALLY ON A WEEKLY BASIS. IF MONITORING RESULTS EXCEED NYCT GUIDELINES, RESULTS SHALL BE PROVIDED TO NYCT ON A DAILY BASIS..

PRIVATE TERRACE 30 5 60

3. MONITORING FREQUENCY MAY BE ALTERED DURING THE WORK WITH NYCT APPROVAL. 4. OWNER'S ENGINEER SHALL BE NOTIFIED IMMEDIATELY IF ANY PORTION OF THE MONITORING PLAN CANNOT BE IMPLEMENTED. 5. ALL VIBRATION MONITORING INSTRUMENTS SHALL BE WIRED OR TRANSMITTED TO A CENTRAL LOCATION ON THE SITE.

6. A REMOTE SENSOR SUCH AS A LIGHT OR BEEPER SHALL BE ACTIVATED AUTOMATICALLY IF THE AMBER VIBRATION LEVELS ARE EXCEEDED.

INDICATES BOTTOM OF FOUNDATION WALL ELEVATION INDICATES TOP OF FOUNDATION WALL ELEVATION b. <...> INDICATES SIZE OF PIER IN INCHES, FIRST DIMENSION SHOWN IS IN THE EAST-WEST DIRECTION. d. ——— INDICATES ADDITIONAL TOP REINFORCEMENT AT SUPPORTS e. INDICATES ADD'L BOTTOM REINFORCING AT SUPPORTS INDICATES ADDITIONAL TOP REINFORCEMENT CONTINUOUS BETWEEN SUPPORTS 9. A—— INDICATES ADDITIONAL BOTTOM REINFORCEMENT CONTINUOUS BETWEEN SUPPORTS

INDICATES CHANGE IN ELEVATION INDICATES CONCRETE COLUMN/SHEARWALL/FOUNDATION WALL

INDICATES CONCRETE COLUMN/FOUNDATION WALL/SHEARWALL BELOW INDICATES SLAB OPENING (FIRST DIMENSION IS IN EAST-WEST DIRECTION)

INDICATES COLUMN/POST/HANGER ABOVE OR BELOW

INDICATES COLUMN DESIGNATION

INDICATES POST DESIGNATION INDICATES HANGER DESIGNATION

INDICATES SHEARWALL DESIGNATION

INDICATES STRRIPS

SPECIAL INSPECTION	VS
(TERMINOLOGY PER CURRENT TR-1) SPECIAL INSPECTION	CURRENT CODE REFERENCES
CONCRETE - CAST IN PLACE	1704.4
CONCRETE TEST CYLINDERS* (TR2)	1905.6
CONCRETE DESIGN MIX* (TR3)	1905.3
SOILS - SITE PREPARATION	1704.7.1
PILE FOUNDATIONS & DRILLED PIER INSTALLATION (TR5)	1704.8
STRUCTURAL SAFETY — STRUCTURAL STABILITY	1704.19
EXCAVATION - SHEETING, SHORING AND BRACING	1704.19 & 3304.4.1

* THESE TEST MUST BE PERFORMED BY A LICENSED CONCRETE TESTING LAB.

NOTES:

1. REFER TO THE PROJECT SPECIFICATIONS FOR ADDITIONAL INFORMATION ON SCOPE AND DETAILED REQUIREMENTS FOR INSPECTIONS. 2. ALL SPECIAL INSPECTIONS SHALL BE PERFORMED UNDER THE SUPERVISION OF A PROFESSIONAL ENGINEER LICENSED IN THE STATE OF NEW YORK. 3. REPORTS OF RESULTS SHALL BE SUBMITTED TO THE OWNER AND ARCHITECT FOR

REVIEW. SIGNED COPIES OF ALL TESTS AND INSPECTION REPORTS SHALL BE FILED WITH THE BUILDING DEPARTMENT (THROUGH THE APPLICANT). 4. REPORTS SHALL STATE WHETHER RESULTS COMPLY WITH CONTRACT REQUIREMENTS, SUMMARIZE THE TYPE OF TEST, THE LOCATION OR COMPONENT TESTED, AND RECOMMEND ANY REMEDIAL MEASURES REQUIRED. REPORT SHOULD NOTE ANY OTHER DEVIATIONS FROM THE CONTRACT DOCUMENTS. 5. FOR ITEMS OF WORK OF OTHER TRADES WHICH ARE SUBJECT TO SPECIAL INSPECTION,

SEE THE CITY OF NEW YORK BUILDING CODE, AS WELL AS ARCHITECTURAL, MECHANICAL, ELECTRICAL, PLUMBING, ETC. DRAWINGS AND SPECIFICATIONS. 6. IN ADDITION TO THE ABOVE REQUIREMENTS, ALL COLUMN SPLICE, BEAM MOMENT CONNECTIONS AT BEAMS DESIGNATED AS "LLRS" AND BRACE FRAME OR WIND TRUSS CONNECTIONS (PER S-940 SERIES OF DWGS.) SHALL COMPLY WITH THE INSPECTION REQUIREMENTS OF AWS D1.8 "STRUCTURAL WELDING CODE-SEISMIC SUPPLEMENT", IF WELDING IS PRESENT IN CONNECTION.

DEVELOPMENT

JDS DEVELOPMENT GROUP 104 FIFTH AVENUE, 9TH FLR NEW YORK, NY 10011

el 646.625.3640

SHoP ARCHITECTS, P.C. 233 BROADWAY, 11TH FLR NEW YORK, NY 10279

ARCHITECT

JAROS BAUM & BOLLES

MEP ENGINEER

STRUCTURAL ENGINEER JAROS, BAUM & BOLLES WSP CANTOR SEINUK 80 PINE STREET, 12TH FLOOR NEW YORK, NY 10005 212.530.9300

212.687.9888

WSP CANTOR SEINUK

PAKRI Consulting Engineers GEO-TECH ENGINEER CIVIL ENGINEER

14 PENN PLAZA NEW YORK, NY 10122 440 PARK AVE SOUTH 7TH FLOOR NEW YORK, NY 10016 646.388.9828

Thornton Tomasetti ELEVATOR CONSULTANT FACADE ENGINEER THORNTON TOMASETTI VAN DEUSEN & ASSOCIATES 120 EAGLE ROCK AVE,SUITE 310 EAST HANOVER, NJ 07936 NEW YORK, NY 10010

9 DEKALB AVE 340 FLATBUSH AVE EXT NEW YORK, NY 11201

DATE ISSUE NO. DATE REVISION THESE DRAWINGS ARE INSTRUMENTS OF SERVICE AND AS SUCH MAY NOT BE USED FOR OTHER PROJECTS, FOR ADDITIONS TO THIS PROJECT OR COMPLETION OF THIS PROJECT BY OTHERS. COPYRIGHT © 2015 SHoP ARCHITECTS PC. ALL RIGHTS RESERVED.

NOT FOR CONSTRUCTION DRAWING TITLE

SEAL & SIGNATURE

GENERAL NOTES, LEGENDS AND **ABBREVIATIONS**

> 04/21/16 PROJECT NO. DRAWN BY CADD CHECKED BY DOB NO. DRAWING NUMBER

ISSUED FOR FOUNDATION PEER REVIEW 06-01-16

P1069

LERA

APPENDIX D

Structural Wind Loads

The wind loads provided in this report include the effects of directionality in the local wind climate. These loads do not contain safety or load factors and are to be applied to the building's structural system in the same manner as would wind loads calculated by code analytical methods.

Table 2a:	Summary of Predicted Peak Overall Structural Wind Loads 64' Wind Floor Open Option			
Configuration	My (lb-ft) Mx (lb-ft) Mz (lb-ft) Fx (lb) Fy (lb)			
Existing	2.51E+09 1.75E+09 4.54E+07 4.10E+06 2.67E+06			
Future	2.52E+09 1.78E+09 4.54E+07 4.15E+06 2.68E+06			
Notes: (1)	The above loads are the cumulative summation of the wind-induced loads at the structural level '1' (i.e. grade) centered about the reference axis shown in Figure 4, exclusive of combination factors.			
(2)	A total damping ratio of 2.0% of critical was used for structural load calculations.			
(3)	The above loads are based on the structural properties as provided on May 9, 2016. The natural building frequencies were as follows:			
	Mode 1: 0.100 Hz (Primarily X-Sway) Mode 2: 0.111 Hz (Primarily Y-Sway) Mode 3: 0.274 Hz (Primarily Torsion)			

(4) The above loads correspond to a 50-year return period basic wind speed (3-second gust) of 98 mph.

Table 3a: Effective Static Floor-by-Floor Wind Loads				
rabio dai	Worst Case Test Configuration			
	64' Wind FI		_	
Floor	Height (ft)	Fx (lb)	Fy (lb)	Mz (lb-ft)
FIOOI	Above '1'	rx (ID)	ry (ID)	IVIZ (ID-IL)
1	0.0	61300	20700	1757000
2	27.2	96300	29300	2733000
3	38.5	59000	17200	1668000
4	49.8	68800	19300	1940000
5	63.9	44600	19400	1062000
6	78.9	43600	19000	907000
7	102.9	40600	17500	783000
8	114.9	27300	11500	484000
9	126.9	27600	11500	486000
10	138.9	28200	11700	495000
11	150.9	28800	11600	517000
12	162.9	29400	12200	525000
13	174.9	30000	12900	537000
14	186.9	29700	13400	530000
15	198.9	29000	13200	462000
16	210.9	29300	13700	463000
17	222.9	29600	14400	470000
18	234.9	30300	15100	482000
19	246.9	30900	15700	487000
20	258.9	31000	16100	488000
21	270.9	30700	16300	482000
22	282.9	30900	16600	464000
23 24	294.9 306.9	31300 31900	17300 18000	470000 478000
25	318.9	32600	18900	489000
26	330.9	63600	41100	1186000
27	360.9	66400	45000	1220000
28	372.9	31600	19000	420000
29	384.9	31600	18600	383000
30	396.9	32300	19200	392000
31	408.9	32800	19900	396000
32	420.9	33800	20800	407000
33	432.9	34700	21600	415000
34	444.9	35200	22500	417000
35	456.9	35300	22800	400000
36	468.9	36300	23800	408000
37	480.9	37500	24600	415000
38	492.9	38400	25600	421000
39	504.9	39300	26800	430000
40	516.9	39300	27300	426000
41	528.9	39500	27100	406000
42 43	540.9	40600	28000	412000
43 44	552.9 564.9	41700 42900	28800 29500	418000 420000
45	576.9	43400	29600	410000
46	588.9	44400	30500	416000
47	600.9	45600	31300	423000
48	612.9	97200	74500	1105000
49 WIND	636.9	115900	87200	1227000
50	660.9	61500	41100	482000
51	672.9	48400	33500	393000
52	684.9	49300	34100	396000
53	696.9	50500	35100	402000
54	708.9	51700	36000	408000
55	720.9	52600	36900	412000
56	732.9	52000	36700	386000

	64' Wind F	loor Open	Option	
Load	Factor for Simultaneous Application of Loads in Table 3a			
Case	X Forces	Y Forces	Torsion	
	(Fx)	(Fy)	(Mz)	
1	+100%	+30%	+30%	
2	+100%	+30%	-55%	
3	+100%	-50%	+30%	
4	+100%	-50%	-55%	
5	-95%	+35%	+65%	
6	-95%	+35%	-30%	
7	-95%	-50%	+65%	
8	-95%	-50%	-30%	
9	+30%	+95%	+35%	
10	+30%	+95%	-30%	
11	+65%	-100%	+50%	
12	+65%	-100%	-55%	
13	-40%	+95%	+35%	
14	-40%	+95%	-30%	
15	-50%	-100%	+50%	
16	-50%	-100%	-55%	
17	+30%	+30%	+100%	
18	+65%	+45%	-90%	
19	+30%	-50%	+100%	
20	+65%	-50%	-90%	
21	-65%	+30%	+100%	
22	-35%	+45%	-90%	
23	-65%	-50%	+100%	

Table 4a: Recommended Wind Load Combination Factors

Note:

24

-35%

-50%

(1) Load combination factors have been produced through consideration of the structure's response to various wind directions, modal coupling, correlation of wind gusts, and the directionality of strong winds in the local wind climate.

-90%

57	744.9	53200	37600	391000
58	756.9	54300	38500	393000
59	768.9	55600	39500	402000
60	780.9	56200	40800	405000
61	792.9	55400	40100	379000
62	804.9	56700	41000	383000
63	816.9	58000	42100	391000
64 WIND	828.9	67100	47800	409000
65	852.9	77600	57100	509000
66	864.9	59600	44100	364000
67	876.9	60400	45100	367000
68	888.9	61300	45600	365000
69	900.9	62100	46900	370000
70	912.9	61200	46200	349000
71	924.9	135200	110200	812000
72	940.9	143700	115400	842000
73	956.9	113500	90100	600000
74	968.9	129000	96100	698000
75	1002.9	125500	82300	546000
76	1021.7	163100	116100	795000
77	1077.2	86600	52100	121000

SUMS - 4.15E+06 2.68E+06 4.54E+07

Notes:

- The loads given in this table should be used with the load combination factors given in Table 4a.
- (2) The loads given in this table are centered about the reference axis shown in Figure 4.
- (3) The above loads correspond to a 50-year return period basic wind speed (3-second gust) of 98 mph.

STRUCTURAL PEER REVIEW STATEMENT

This structural peer review and report, dated 20 June 2016, is complete for the foundation and superstructure submission.

Structural Peer Reviewer Name: William J. Faschan

Leslie E. Robertson Associates

Structural Peer Reviewer Address: 40 Wall Street, FL 23

New York, NY 10005

Project Address: 9 DeKalb Avenue, Block #149, Lot #100

Department Application Number for Structural Work: #320914338

Structural Peer Reviewer Statement:

I,_William J. Faschan_, am a qualified and independent NYS licensed and registered engineer in accordance with BC Section 1627.4, and I have reviewed the structural plans, specifications, and supplemental reports for _9 DeKalb Avenue, Block #149, Lot #100, Application #320914338 and found that the structural design shown on the plans and specifications generally conforms to the foundation and structural requirements of Title 28 of the Administrative Code and the 2008 NYC Construction Codes. The Structural Peer Review Report is attached.

New York State Registered Design Professional

(for Structural Peer Review only)

Name William J. Faschan

Cc: Project Owner: Mr. Simon Koster

Project Registered Design Professional: Mr. Silvian Marcus